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A B S T R A C T   

Though much progress has been made to understand feature integration, debate remains regarding how objects 
are represented in mind based on their constituent features. Here, we advance this debate by introducing a novel 
shape-color “conjunction task” to reconstruct memory resolution for multiple object features simultaneously. In a 
first experiment, we replicate and extend a classic paradigm originally tested using a change detection task. 
Replicating previous work, memory resolution for individual features was reduced when the number of objects 
increased, regardless of the number of to-be-remembered features. Extending previous work, we found that high 
resolution memory near perfect in resemblance to the target was selectively impacted by the number of to-be- 
remembered features. Applying a data-driven statistical model of stochastic dependence, we found robust evi-
dence of integration for lower-resolution feature memories, but less evidence for integration of high-resolution 
feature memories. These results suggest that memory resolution for individual features can be higher than 
memory resolution for their integration. In a second experiment which manipulated the nature of distracting 
information, we examined whether object features were directly bound to each other or by virtue of shared 
spatial location. Feature integration was disrupted by distractors sharing visual features of target objects but not 
when distractors shared spatial location – suggesting that feature integration can be driven by direct binding 
between shape and color features in memory. Our results constrain theoretical models of object representation, 
providing empirical support for hierarchical representations of both integrated and independent features.   

1. Introduction 

An ability fundamental to human experience is visual object recog-
nition. For example, buying ingredients for a dinner party requires 
recognizing and purchasing multiple objects from a grocery list: apples 
rather than oranges, potatoes rather than onions, and eggs rather than 
garlic. Although these objects can have many overlapping features (e.g., 
apples and oranges can be spherical, apples and onions can be red), we 
effortlessly and correctly integrate featural information (“red”, “circle”) 
to form coherent object representations (“apple”). How the mind com-
bines disparate multimodal features to form integrated objects is known 
as the binding problem (Riesenhuber & Poggio, 1999; Roskies, 1999; von 
der Malsburg, 1981), a theoretical and computational problem with a 

rich history in the cognitive sciences (Feldman, 2013; Garnelo & Sha-
nahan, 2019; Treisman, 1998). Understanding how the mind solves the 
binding problem may be important for many real-world scenarios, such 
as in the design of increasingly sophisticated autonomous systems that 
identify complex objects from simple features (LeCun, Bengio, & Hinton, 
2015). In the psychological sciences, feature integration has been a 
central topic of study in a variety of domains: attention (Kristjánsson & 
Egeth, 2020), visual search (Wolfe & Horowitz, 2017), immediate and 
delayed memory (Erez, Cusack, Kendall, & Barense, 2016; Horner, 
Bisby, Bush, Lin, & Burgess, 2015; Liang, Erez, Zhang, Cusack, & Bare-
nse, 2020; Ma, Husain, & Bays, 2014), as well as in disorders associated 
with binding impairments, such as Alzheimer’s disease (Cecchini et al., 
2017; Parra et al., 2009) and autism spectrum disorder (Simon & 
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Wallace, 2016; Stevenson et al., 2014; Stevenson et al., 2019). Though 
there has been much progress made in understanding feature integra-
tion, there remains no strong consensus among researchers regarding 
how objects are represented in the mind based on their constituent 
features. Below, we roughly group the models of object representation 
into three categories based on their representational format: object- 
based, feature-based, and object+features. 

Purely object-based models (Fig. 1a) hold that features such as shape 
and color are integrated to form representations of object identity (e.g., 
“grandmother-like cells”, Gross, 2002; Mahon, 2015; Rey et al., 2020; 
Quiroga, Kreiman, Koch, & Fried, 2008; “slot models”, Fukuda, Awh, & 
Vogel, 2010; Luck & Vogel, 1997; Zhang & Luck, 2008; “object files”, 
Balaban, Drew, & Luria, 2019; Balaban, Assaf, Arad Meir, & Luria, 
2019). Previous behavioral evidence suggests that memories are con-
strained by the number of objects held in mind rather than by the 
number of features. In classic change-detection tasks, participants can 
detect changes of sixteen features distributed across four objects just as 
well as four features distributed across four objects (Luck & Vogel, 
1997), suggesting that objects may be the “building blocks” of memory. 
In the domain of attention, cognitive resources seem to be constrained 
by the number of objects rather than by the number of features (e.g., 
“object-based attention”, Gao et al., 2017; Shen, Huang, & Gao, 2015). 
Not only are markers of object-based representations found in behav-
ioral experiments, but reliable object-based markers have been observed 
in neuroimaging. For example, contralateral delay activity present in 
electroencephalography indexes the number of objects held in mind 
rather than the number of features (Fukuda et al., 2010; Luria, Balaban, 
Awh, & Vogel, 2016). Further supporting these results, both rodent 
neurophysiology and single-cell recording in epilepsy patients have 
uncovered cells in the medial temporal lobe that respond specifically to 
objects invariant of viewpoint (Chang & Huerta, 2012; Cohen et al., 
2013; Jacklin, Cloke, Potvin, Garrett, & Winters, 2016; Quiroga, 2012; 
Valdez et al., 2015; Vannucci et al., 2003; Winters, Bartko, Saksida, & 
Bussey, 2010). This diversity of literature across many domains dem-
onstrates robust evidence in favor of integrated object-based 
representations. 

In contrast, purely feature-based models (Fig. 1b) predict that objects 
are formed through direct reactivations of sensory features (e.g., 
“embodied cognition”, Barsalou, 2016; Martin, 2016; Pezzulo et al., 
2013; “sensory recruitment model”, Katus, Grubert, & Eimer, 2015, 
Sreenivasan, Curtis, & D’Esposito, 2014; Ester, Anderson, Serences, and 
Awh, 2014; “binding-by-synchrony”; Palanca & DeAngelis, 2005; Pina, 

Bodner, & Ermentrout, 2018; Rabagliati, Doumas, & Bemis, 2017; 
Singer & Gray, 1995). For example, objects have been proposed to be 
grounded in perceptual and action systems, such that objects are linear 
combinations of feature-based representations (Barsalou, 2016). 
Behavioral evidence in favor of feature-based models include evidence 
of independent forgetting, whereby a single feature of an object can be 
successfully retrieved without access of other features (Brady, Konkle, 
Alvarez, & Oliva, 2013; Fougnie & Alvarez, 2011; Utochkin & Brady, 
2020). Moreover, features associated within the same object can be held 
at different resolutions, suggesting that there is not necessarily a single 
all-or-nothing object representation (Bays, 2015; Fougnie & Alvarez, 
2011; Ma et al., 2014; van Berg, Shin, Chou, George, & Ma, 2012). This 
body of work suggests that features are represented independently 
because separate features of the same object can be accessed at varying 
resolutions (e.g., one feature of an object can be remembered in perfect 
detail, whereas other features from the same object can be seemingly 
inaccessible). 

Importantly, we emphasize a third class of object + features models 
(Fig. 1c) which posit that multiple representations of an object can be 
activated simultaneously in a hierarchical and distributed manner. In-
dependent features are represented in early stages of the object pro-
cessing pathway, whereas the integrated representation of the object as 
a cohesive whole is found at later stages of the pathway (e.g., “repre-
sentational-hierarchical view”; Barense et al., 2012; Binder, 2016; 
Cowell, Barense, & Sadil, 2019; “binding-in-context”; Cooper & Ritchey, 
2019, 2020; Diana, Yonelinas, & Ranganath, 2007; Ranganath, 2010; 
Yonelinas, Ranganath, Ekstrom, & Wiltgen, 2019; “cognitive map”; 
Behrens et al., 2018; Hawkins, Lewis, Klukas, Purdy and Ahmad, 2019; 
Mok & Love, 2019). This viewpoint may account for both the predictions 
of a purely object-based (Fig. 1a) or purely feature-based (Fig. 1b) model 
in a single theoretical framework. In an object+features model, sensory 
regions represent independent features such as shape (Kourtzi & 
Kanwisher, 2000), sound (Feng & Wang, 2017), and color (Brouwer & 
Heeger, 2009), whereas anterior regions of neocortex represent feature- 
based information in a transformed and integrated format (Coutanche & 
Thompson-Schill, 2015; Erez et al., 2016; Jung, Larsen, & Walther, 
2018; Liang et al., 2020; Martin, Douglas, Newsome, Man, & Barense, 
2018; Rademaker, Chunharas, & Serences, 2019; Schapiro, Turk- 
Browne, Botvinick, & Norman, 2017). In particular, the perirhinal cor-
tex within the medial temporal lobe is thought to contain an explicit 
conjunctive code for the integrated features composing an object, such 
that the whole is different from the sum of the parts (Erez et al., 2016; 

Fig. 1. (a) Object-based models predict that features are integrated to form transformed representations of objects. In a purely object-based prediction, the 
fundamental “unit” of cognition is objects rather than features, such that memory and attentional resources are constrained entirely by the number of objects rather 
than the number of features held in mind. (b) Feature-based models predict that objects are reactivations of independent features. In a purely feature-based account, 
features are not integrated and are instead represented independently. (c) Object+Features models predict that objects are represented at multiple levels – both in 
terms of independent features and as an integrated representation of its constituent features. By this account, features are bound to form objects but are also 
concurrently and independently represented in sensory cortex. 
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Liang et al., 2020; Martin et al., 2018). Importantly, an object+features 
model also predicts feature independence, because each feature is rep-
resented in sensory cortex and can be susceptible to interference from 
competing feature-based information. For this reason, it is entirely 
possible to observe independent forgetting and varying resolution be-
tween features of the same object (Bays, 2015; Brady et al., 2013; 
Fougnie & Alvarez, 2011; Ma et al., 2014; van Berg et al., 2012), despite 
observed integration of those features in other task contexts. Indeed, 
recent evidence has increasingly favored object+features accounts 
which can reconcile seemingly contradictory findings of independence 
and integration in memory (Fig. 1c; Cowan, Saults, & Blume, 2014; 
Hardman & Cowan, 2015; Markov, Tiurina, & Utochkin, 2019; Markov, 
Utochkin, & Brady, 2021; Oberauer & Eichenberger, 2013; Olson & 
Jiang, 2002; Sone, Kang, Li, Tsubomi, & Fukuda, 2021; Wheeler & 
Treisman, 2002). 

In the present study, we adjudicate between these three models of 
object representation (Fig. 1) using a novel shape-color “conjunction 

task” to characterize the resolution of memory for the shape and color 
features of an object (Fig. 2; for a previous version of this task using 
simpler orientation and color, see Sone et al., 2021). Critically, our 
shape-color conjunction task can reconstruct multiple object features 
simultaneously from the same behavioral response, as opposed to tasks 
which reconstruct each feature sequentially (Ma et al., 2014). The 
simultaneous property of our shape-color conjunction task is important 
because tasks which reconstruct features sequentially (e.g., color first 
and then orientation second, and vice versa) can induce independence 
between object features even though this information may be held in an 
integrated manner (Sone et al., 2021). In Experiment 1, we first replicate 
and then extend a classic paradigm originally tested using a change 
detection task (Luck & Vogel, 1997) with our shape-color conjunction 
task. As traditional change detection tasks are discrete (i.e., memory is 
often quantified through a binary “yes/no” response), the continuous 
nature of our shape-color conjunction task allows us to examine memory 
resolution in a more sensitive manner. Accounting for both higher- and 

Fig. 2. Shape-color conjunction task. (a) Circular spaces were used to capture the resolution of shape and color memory in a single response. Participants recon-
structed the target by moving the cursor along the circumference (remapped from shape space) and radius (remapped from color space). An item corresponding to the 
position of the cursor was displayed, such that shape and color changed continuously on a 2D circle. After a mouse response, participants fine-tuned their selection. 
Participants were not shown the on-screen instructions during the actual task and the size of some elements have been increased for illustrative purposes. Fig. 3 and 
Fig. 7 depict the stimulus displays, with Fig. 3 shown approximately to scale. (b) Shape error was operationalized as the angular distance between the target and 
reconstructed shape, whereas (c) color error was operationalized as the radial distance between the target and reconstructed color. To equate the distributional 
properties between the shape and color spaces, participant responses determined the size of the response bins on circular space in a data-driven manner (see section 
2.4.1. Memory Resolution). The 25% quantile of responses (fine-grained bin) isolated reconstructions near-perfect in resolution, whereas the 90% quantile of responses 
(“yes” bin) included reconstructions that ranged from higher to lower resolution. We termed 90% quantile the “yes” bin because responses here are roughly akin to 
“yes” responses on a discrete task such as change detection, which can include both high to lower resolution memories. 
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lower-resolution memories, we show that visual objects can contain 
both an integrated code as well as independent feature representations. 
Applying a data-driven statistical model of feature integration based on 
stochastic dependence, we then provide evidence that memory for fea-
tures can be higher in resolution than memory for the integrated code, 
suggesting that individual and integrated features from the same object 
can differ in memory resolution. 

Although Experiment 1 provides evidence in favor of both an inte-
grated code and independent features underlying the object represen-
tation, we did not control for the influence of spatial location (Fig. 3). 
Features in the environment do not only co-occur (e.g., an apple is both 
spherical and red), but visual features also occupy the same spatial 
location (e.g., “red” and “spherical” features can be located in the same 
position in the environment). Indeed, previous work has highlighted the 
critical influence of spatial location on object identity (Cai, Sheldon, Yu, 

& Postle, 2019; Cai et al., 2020; Golomb, Kupitz, & Thiemann, 2014; 
Pertzov & Husain, 2014; Schneegans & Bays, 2017), raising the possi-
bility that visual features may be bound to a shared spatial location 
rather than to each other in memory. In Experiment 2 we varied the 
nature of interference, examining the influence of task-irrelevant visual 
feature and spatial location information on the integrated object code. In 
this second experiment, we found that task-irrelevant feature informa-
tion but not spatial location disrupted shape-color integration. Taken 
together, our work reveals that visual features can be bound directly to 
each other in a manner that cannot be entirely accounted by spatial 
location in memory, results which constrain models of object 
representation. 

Fig. 3. Experiment 1 task design. We varied the number of objects and to-be-remembered features in each condition. (a) In the single-feature shape condition, 
participants remembered shape and ignored color. In the single-feature color condition, participants remembered color and ignored shape. In the both-features 
condition, participants remembered both shape and color. Each of the three conditions was presented in two blocks of 120 trials, with blocks presented in an 
interleaved order. (b) An example of a set size 2 trial in the both-features condition. Each box indicates a possible location that an object could appear in. No boxes 
were actually displayed. During the test phase, the shape-color conjunction task appeared at the location of the target object, with the reconstructed object appearing 
in the middle of the computer monitor. 
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2. Experiment 1 

2.1. Participants 

Thirty participants were recruited from the undergraduate student 
pool at the University of Toronto and from the community. One 
participant was excluded without further data analysis as they did not 
complete all trials of the experiment. The final sample contained 29 
individuals (Mage = 20.93 years, SDage = 1.22 years, Females = 24). 
Participants recruited from the undergraduate student pool received 
course credit whereas individuals recruited from the community 
received $20 CAD as compensation. REB approval was received from the 
University of Toronto (Protocol 38,856). 

2.2. Apparatus and Stimuli 

The experiment was developed in MATLAB using psychtoolbox-3 
(Kleiner, 2007). Participants were tested on a Latitude 3460 Dell 
laptop, with a screen resolution of 1920 × 1080 and a frame refresh rate 
of 60 Hz. Participants responded using a Dell mouse and keyboard to 
task instructions. 

Shape stimuli were sampled from the Validated Circular Shape Space 
(VCS space, available on the Open Science Framework at https://osf. 
io/d9gyf/; Li, Liang, Lee, and Barense, 2020), a shape space compara-
ble to circular color space. Color stimuli were sampled from a circle 
defined on CIELAB color space with luminance held constant (L = 70, 
a = 20, b = 38, radius = 60 units; Zhang & Luck, 2008). Stimuli were 
approximately 3.5 cm × 3.5 cm on the monitor and participants were 
seated approximately 60 cm away from the monitor, with each stimulus 
subtending approximately 3.34 degrees of visual angle. 

We used the properties of circular shape and color space to quantify 
memory resolution, defined as the detail of the representation held in 
mind (Yonelinas, 2013; Ekstrom and Yonelinas, 2020). Angular distance 
approximated the magnitude of visual similarity on circular space, 
meaning that items sampled from closer distances tended to be more 
visually similar compared to items sampled from further distances. For 
example, stimuli sampled from 60 degrees apart are more visually 
similar compared to stimuli sampled from 120 degrees apart, a property 
that is true anywhere on circular space. The magnitude of visual simi-
larity was therefore used as a proxy for the resolution of memory 
(described in the next section), as reconstructions high in similarity was 
nearly identical to the target, whereas reconstructions lower in simi-
larity was less similar to and therefore lower in detail relative to the 
target. 

2.2.1. Shape-color conjunction task 
We developed a novel shape-color task which can be used to 

reconstruct the resolution of multiple object features in a single 
behavioral response. Circular spaces for shape and color features were 
displayed together on a 2D circle (Fig. 2a), with circular shape space 
remapped along the circumference and circular color space remapped 
along the radius. Each degree corresponded to a unique shape sampled 
from VCS space, whereas each radial position corresponded to a unique 
color sampled from circular color space, creating a series of concentric 
color rings. As the mouse cursor moved along x and y coordinates on the 
shape-color conjunction task, the shape and color transitioned along 
each respective feature dimension. The reconstructed object was dis-
played at the center of the computer monitor, and this reconstructed 
shape-color object dynamically changed with the mouse movement. 
During the test portion of each trial, participants freely explored the 
shape-color feature space using the mouse cursor to reconstruct the 
target object (middle Fig. 2a). Participants made their response using the 
left mouse button, after which they could fine-tune their response using 
the keyboard arrow keys (Fig. 2a). The left-right arrow keys incremen-
tally sampled shapes whereas the up-down arrow keys incrementally 
sampled colors from circular space (see a visual example on the Open 

Science Framework: https://osf.io/976ta/). 
The x and y coordinates on the shape-color conjunction task corre-

sponded to two types of information: angular position (θ), reflecting 
shape identity, and radial position (r), reflecting color identity (Fig. 2). As 
visual similarity was precisely defined on shape and color space (Li, 
Liang, Lee, and Barense, 2020), reconstructions closer in distance to the 
target item reflect higher resolution memories of the target. The reso-
lution of the memory trace, termed error, was defined as the angular 
distance for shape responses (i.e., θ; Fig. 2b) and radial distance for color 
responses (i.e., r; Fig. 2c) of a reconstructed shape-color object from the 
target shape-color object, with higher resolution memories being closer 
to the target (lower error) and lower resolution memories being farther 
from the target (higher error). Importantly, our shape-color conjunction 
task can be used to reconstruct multiple features simultaneously, in 
contrast to existing continuous tasks which are used to reconstruct 
features sequentially. In particular, sequential tasks favor feature-based 
strategies which can promote independence between features in mem-
ory (Sone et al., 2021). Our task also allows for the investigation of 
shape-color conjunctive objects that are more complex than the simpler 
orientation and color stimuli commonly studied using continuous 
retrieval tasks (for a review, see Ma et al., 2014), while also reducing the 
contribution of well-established categorical labels as the shape-color 
object stimuli are unfamiliar to participants (Bae, Olkkonen, Allred, & 
Flombaum, 2015; Hardman, Vergauwe, & Ricker, 2017; Pratte, Park, 
Rademaker, & Tong, 2017; Souza, Overkott, & Matyja, 2021). 

A small empty circle was included at the center of the shape-color 
conjunction task to ensure that the displayed colors at this central po-
sition were visually differentiable (Fig. 2a). Color was remapped 
differently on the shape-color conjunction task for each trial, such that 
there were never any systematic mappings between particular colors 
and locations. In contrast, eight shapes sampled from equidistant posi-
tions from VCS space were displayed along the cardinal axes of the 
conjunction task (i.e., every 45 degrees). These eight shapes served as 
visual anchors as all shapes from VCS space could not be displayed due 
to space limitations (i.e., it is impossible to depict all 360 shapes at a 
decipherable size). These anchor shapes could be used by participants to 
learn and infer the organization of all the shapes from VCS space. To 
ensure that there were never any systematic mappings between partic-
ular stimuli and spatial coordinates on the conjunction task across 
participants, the positions of shapes were remapped differently for each 
participant. These shape mappings were not randomized every trial 
because we reasoned that doing so would generate large amounts of 
undesired interference from trial to trial (as observed in previous work; 
Li, Fukuda, Lee, and Barense, 2020). Critically, the difference in 
location-feature mappings between shape and color on the shape-color 
conjunction task could not drive observed results, as the experiment 
was conducted using a within-subject design. Moreover, the mappings 
between shape and color on our conjunction task were directly com-
parable to our previous work on an orientation-color conjunction task 
(Sone et al., 2021). 

2.3. Procedure 

Experiment 1 was based on a classic paradigm originally tested using 
a change detection task (Luck & Vogel, 1997). At the beginning of every 
trial, a fixation dot appeared for 500 ms at the center of the screen. 
Objects could appear at six possible locations every trial (Fig. 3b). After a 
1000 ms retention interval, participants were cued to report a target 
object. Each participant completed three conditions (Fig. 3a). In the 
single-feature shape condition, only the shape of the target shape-color 
object was task-relevant, and participants were instructed to attend to 
shape and to ignore color. In the single-feature color condition, only the 
color of the target shape-color object was task-relevant, and participants 
were instructed to attend to color and to ignore shape. In the both-feature 
condition, both the shape and color of the target shape-color object were 
task-relevant, and participants were instructed to attend to both 
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features. Each of the single-feature shape, single-feature color, and both- 
feature conditions were presented in separate blocks of 120 trials. 
Within each block, 60 trials displayed a single object (set size 1) and 60 
trials displayed two objects (set size 2). The presentation order of set size 
1 and set size 2 trials was randomized within each block, with the pre-
sentation order of blocks was randomized for each participant. In total, 
the experiment comprised 720 trials and participants were allotted an 
optional break between every block of 60 trials. Participants were 
explicitly asked to avoid verbal strategies and were to guess if they could 
not remember. A set of practice trials ensured that participants correctly 
followed task instructions. 

The task-irrelevant feature in each single-feature condition was 
identical (i.e., either the same shape or the same color) during set size 2 
trials. For example, when the task-relevant feature was shape (i.e., 
single-feature shape condition), the task-irrelevant color might be the 
same shade of blue for both objects (Fig. 3a). Likewise, when the task- 
relevant feature was color (i.e., single-feature color condition), the 
task-irrelevant shape was identical for both objects. This manipulation 
directly constrained the number of to-be-remembered features within 
each condition. In each single-feature condition, a set size 1 trial would 
include one to-be-remembered feature, whereas a set size 2 trial would 
include two to-be-remembered features. In contrast, the both-feature 
condition would include two to-be-remembered features in a set size 1 
trial, whereas a set size 2 trial would include four to-be-remembered 
features. In this way, the number of to-be-remembered features and 
the number of objects could be experimentally manipulated as was done 
in previous work (Luck & Vogel, 1997). The critical difference between 
the present and previous work was the implementation of our novel 
shape-color conjunction task, which allowed us to examine with a single 
behavioral response how memory resolution was affected by increasing 
the features to-be-remembered within each object compared with 
increasing the number of objects. As described below (Section 2.4.1. 
Memory Resolution), we examined memory resolution by binning shape 
and color responses in a data-driven manner based on quantiles. 

2.4. Statistical analysis 

Shape resolution was operationalized as the angular distance be-
tween a reconstructed and target shape. Color resolution was oper-
ationalized as the radial distance between a reconstructed and target 
color (Fig. 2). See Fig. S1 in the Supplemental Material for raw error 
distributions. 

2.4.1. Memory resolution 
As angular distance is a proxy for visual similarity on a circular 

stimulus space (Li, Liang, Lee, and Barense, 2020), we directly captured 
the resolution of the memory trace by quantifying the distance between 
a reconstructed object with the target object (i.e., error). 

To characterize responses, we first equated the distributional prop-
erties between the shape and color spaces. Responses were binned by 
varying the cut of circular space derived from participant responses in 
the single-feature condition at set-size 1 (i.e., the condition with 1 to-be- 
remembered feature displayed in 1 object). In this data-driven approach, 
we determined the size of circular space for shape and color individually 
at the 25%, 50%, 75%, and 90% quantiles (Fig. 2). For example, if 25% 
of all trial-wise shape responses fell within circular space at 4◦ error on 
either side of the target across all participants in the single-feature 
condition for set size 1, we would use 4◦ error as the cut-off for all 
subsequent conditions (e.g., the both-feature condition). Thus, this 25% 
quantile captures the size of circular space corresponding to the 25% 
highest resolution responses and was termed fine-grained, because these 
responses were nearly identical in similarity with respect to the target 
(validated in separate experiments; see Li, Liang, Lee, and Barense, 
2020; Schurgin, Wixted, & Brady, 2020). The bins corresponding to the 
50%, 75%, and 90% quantiles contained increasingly lower resolution 
responses, because the shape-color reconstruction could range from 

nearly identical to incrementally less similar with respect to the target. 
Overall, this approach resulted in the following cuts of circular space: 
25% quantile (fine-grained responses) for shape at 4◦ error and color at 
6◦ error; 50% quantile for shape at 10◦ error and color at 14◦ error; 75% 
quantile for shape at 20◦ error and color at 30◦ error; and 90% quantile 
(“yes” responses) for shape at 47◦ error and color at 60◦ error. 

We used the term “yes” responses (90% quantile) because responses 
in this bin roughly reflect “yes” responses on a discrete task such as 
change detection. Importantly, a “yes” response on a discrete task in-
cludes responses that range from higher to lower memory resolution and 
can reflect the existence of a memory that varies from a near-perfect 
match to a lower-resolution coarse-grained match to the target. For 
example, even if a participant’s memory is not an exact match to the 
specific shade of blue or red, participants can succeed on a change 
detection task so long as the foils are visually distinct (e.g., Awh, Barton, 
& Vogel, 2007). Thus, yes/no responses on a discrete task like change 
detection does not explicitly distinguish between higher and lower 
resolution representations, and the “yes” response bin in our experiment 
approximates this property of discrete tasks. Importantly, the contin-
uous nature of our shape-color conjunction task can also isolate re-
sponses reflecting the highest memory resolution near-perfect in 
resemblance to the target (fine-grained: 25% quantile, Fig. 2). 

We assumed that memories can range from high to low resolution, an 
assumption supported by behavioral, computational, and neuroimaging 
evidence (Bays, Catalao and Husain, 2009; Berens, Richards and Horner, 
2020; Brunec, Moscovitch, & Barense, 2018; Greene and Naveh- 
Benjamin, 2020; Korkki, Richter, Jeyarathnarajah and Simons, 2020; 
Ma et al., 2014; Richter, Cooper, Bays and Simons, 2016; Yonelinas, 
2013; Schurgin et al., 2020; Zhang & Luck, 2008; 2009). Fine-grained 
responses (25% quantile) included reconstructions that were identical 
or a near-perfect match to the target (i.e., because these responses are 
highly similar to the target on perceptually uniform space), whereas the 
response bins corresponding to the 50%, 75%, and 90% quantile con-
tained responses that were a near-perfect match to the target as well as 
responses that reflected increasingly lower-resolution memory for the 
target (i.e., because these responses could range from high to low sim-
ilarity to the target on perceptually uniform space). Notably, this anal-
ysis approach is different from the analysis approaches typical in the 
visual short-term memory literature (Ma et al., 2014). Previous studies 
have analyzed responses from a continuous retrieval task in terms of the 
mean absolute error across all trials of a condition or have fit errors with 
mixture models to delineate specific states in memory (e.g., a “guessing” 
state; Zhang & Luck, 2008). In contrast, we were specifically interested 
in isolating the resolution of memories without assuming any difference 
in memory states (i.e., a difference between precision and guessing; 
Schurgin et al., 2020). Our approach captures memory across high to 
lower resolution, without assumptions of guessing. See Supplemental 
Material for an analysis of the raw distributions and an analysis using 
mean absolute errors. Critically, the analysis based on mean absolute 
error was insufficient for our purposes, as this analysis was not sensitive 
to fine-grained representations of the target (Fig. S3a, b). The response 
bin approach based on quantiles was furthermore critical for the model- 
based stochastic dependence analyses (see next section), and we discuss 
the implications of these response bins on the interpretation of the re-
sults in section 4. Interim Discussion and 7. General Discussion. 

Inferential statistics were conducted with linear mixed models using 
the lme4 package (Bates, Kliegl, Vasishth, & Baayen, 2015) in R version 
2.6.1 (R Core Team, 2019). Effect sizes were estimated using Cohen’s d, 
measured by the difference between condition means divided by the 
pooled standard deviation across conditions (Lakens, 2013). Number of 
objects (set size 1 or 2) and number of to-be-remembered features 
(single-feature or both-feature condition) were modelled as fixed effects 
whereas participants were modelled as random intercepts to account for 
the within-subject design. This analysis was conducted for shape and 
color independently and was repeated for each quantile. In this way, we 
examined how the number of to-be-remembered features and number of 
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objects influenced the resolution of reconstructed shape and color 
memories. For the benefits of applying linear mixed models over 
repeated-measures ANOVA in within-subject designs, see Magezi 
(2015). Linear mixed models are commonly applied in psychology and 
other disciplines (for previous applications in the visual short-term 
memory literature, see Bartsch, Singmann, & Oberauer, 2018; Kliegl, 
Masson, & Richter, 2010; Mitchell & Cusack, 2018). 

2.4.2. Stochastic dependence model of feature integration 
The above analyses of memory resolution assessed the relationship 

between shape and color by examining how each condition impacted 
shape and color memory independently (i.e., how the number of objects 
and number of to-be-remembered features impacted memory resolution 

for shape and color separately). Here, we developed a data-driven sta-
tistical model of feature integration using stochastic dependence (Hicks 
& Starns, 2015; Horner & Burgess, 2013; Joensen, Gaskell, & Horner, 
2020; Meiser & Bröder, 2002), extending previous stochastic depen-
dence models to our continuous shape-color conjunction task. As an 
example of how this model works, imagine a scenario where you are 
asked to determine whether flipping one coin can influence the results of 
a second coin (Fig. 4a). We can conduct an experiment by flipping two 
coins every trial for many trials (i.e., “Coin A" and “Coin B"), recording 
on each trial whether Coin A and Coin B landed on heads or tails. After 
each trial, we can then record instances when both coins landed on 
heads, both coins landed on tails, and when one coin landed on heads 
and the other on tails. If Coin A and Coin B do not influence each other (i. 

Fig. 4. Data-driven stochastic dependence model. (a) The probability of observing two heads when flipping two fair coins is the probability of observing heads in one 
coin (50%) multiplied by the probability of observing heads in the other coin (50%). In this case, the joint probability (50% * 50% = 25%) is equivalent to the 
observed probability of obtaining two heads (25%) because each coin toss is independent (e.g., 25% - 25% = 0%; numerator in the observed dependence formula 
above). (c) Because the maximum possible dependence observable in the data is 25% for two fair coins (e.g., 50% - 25%; denominator in the observed dependence 
formula above), the observed dependence is 0% (e.g., observed dependence = 0% / 25% = 0%). (b) Using this same logic, we can examine whether the observed 
probability of reconstructing shape and color within the same quantile is greater than the joint probability of reconstructing shape and color. On the example above 
for the 90% quantile (“yes” responses), the observed probability of reconstructing shape and color together (90%) is greater than would be expected given inde-
pendence (90% - (90% * 90%) = 9%; numerator in the observed dependence formula above). Because the maximum observable dependence in our example is also 
9% (90% - 81%; denominator in the observed dependence formula above), the (c) observed dependence is 100% (e.g., observed dependence = 9%/9% = 100%). In 
other words, our example of fair coins was completely independent (i.e., the outcome of one coin does not predict the outcome of another: observed 
dependence = 0%), whereas our example of “yes” responses was completely dependent (i.e., shape and color perfectly covaried in their resolution: observed 
dependence = 100%). 
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e., statistical independence), we know that the probability of observing 
two heads in our experiment (Pobserved(A&B) = 25%) is equivalent to the 
probability of heads in one coin (PA = 50%) multiplied by the proba-
bility of heads in the other coin (PB = 50%). By comparing the observed 
probability of two heads (Pobserved(A&B) = 25%) with the predicted joint 
probability assuming independence (PA × PB = 50 %  × 50% =25%), we 
can examine whether our recorded data about the coin tosses matches 
our prediction of independence. If the observed probability of obtaining 
two heads is equal to the joint probability of obtaining two heads (Pob-

served(A&B) = PA × PB), we know that the coins are independent because 
our observations did not differ from a predicted model positing complete 
independence. On the other hand, if the observed probability of 
obtaining two heads is greater than the joint probability of obtaining 
two heads, we know that the coin tosses can influence each other (i.e., 
not independent) because two heads occur together more often than 
would be possible given complete independence. 

We extend the coin-toss logic described above to the both-feature 
condition on our shape-color conjunction task (Fig. 4b). This analysis 
was repeated at each bin, with the 25% quantile reflecting dependence 
for fine-grained memory (containing high-resolution reconstructions 
near-identical to the target), and 90% quantile reflecting dependence for 
“yes” responses (containing both higher and lower resolution re-
constructions). Critically, object memory was defined as the observed 
proportion of responses whereby both shape and color were recon-
structed within a given response bin, akin to identifying the likelihood of 
observing two heads in our coin-flipping example. Below, we provide an 
example using the “yes” response bin (90% quantile): 

Object Memory = Pobserved(A&B)

A data-driven independent model positing no dependency between 
shape and color was created by multiplying the proportion of trials with 
“yes” shape (PA) and color responses (PB). Multiplication results in the 
joint probability of reconstructing both features as a “yes” response, 
assuming complete independence. 

Independent Model = PA ×PB 

Next, the observed proportion of “yes” shape-color responses were 
subtracted by the independent model to obtain a dependence score: 

Dependence Score = Pobserved(A&B) − (PA ×PB)

This dependence score captures the degree to which shape and color 
was reconstructed together compared to a model positing complete in-
dependence. If shape and color are reconstructed together at a proba-
bility that is not different than the independent model, then we know 
that these features tend to be reconstructed independently (i.e., the 
resolution of one feature does not covary with the resolution of another 
feature in the same quantile). However, if the observed probability of 
reconstructing “yes” shape and color responses together is greater than 
the independent model, we know that “yes” shape and color responses 
are reconstructed together more often than would be predicted by in-
dependence (i.e., the resolution of one feature covaries with the reso-
lution of another feature). Thus, a dependence score above zero 
indicates feature integration. 

The dependence score described above characterizes how different 
the observed shape-color responses are from complete independence (i.e., 
how much dependence is present in the shape-color responses produced 
by the participant). However, it would also be useful to know how 
different the observed shape-color responses are from complete depen-
dence (i.e., how much independence is present in the shape-color re-
sponses produced by the participant). To quantify how different the 
participant shape-color responses are from complete dependence and 
complete independence within a single measure, we can divide the 
dependence score by the maximum possible dependence observable in 
the data (Fig. 4c). In this context, 0% observed dependence means that 
participant responses captured none of the possible dependence that 

could be observable in the data (i.e., complete independence). In 
contrast, 100% observed dependence means that participant responses 
captured all of the possible dependence that could be observable in the 
data (i.e., complete dependence). 

Observed Dependence :

[
Pobserved(A&B) − (PA × PB)

]

[min(PA,PB) − (PA × PB) ]

Using observed dependence (Fig. 4c), we can determine not only 
whether two coins are fair or not, but also how different our coin flips 
are from two hypothetical coins that are always fair (observed 
dependence = 0%) or always unfair (observed dependence = 100%). In 
other words, we can characterize how dependence changes as response 
bins increasingly contain lower resolution responses (e.g., the 25%, 
50%, 75%, and 90% quantiles). If the resolution of shape and color were 
completely independent (i.e., the resolution of shape does not predict 
the resolution of color), then the observed dependence will equal to 0%. 
On the other hand, if the resolution of shape and color were completely 
dependent (i.e., when shape is reconstructed in high-resolution, color is 
also reconstructed in high-resolution), then the observed dependence 
will equal to 100%. 

Bayesian one-sample t-tests assessed whether the observed depen-
dence produced by participants was greater than 0% (complete inde-
pendence) and was less than 100% (complete dependence) using JASP 
0.9.1.0 (JASP Team, 2019). In all cases, the Cauchy distribution was 
used as the prior and the Bayes factor was interpreted using established 
guidelines (Gelman, Jakulin, Pittau, & Su, 2008; Lee & Wagenmakers, 
2013). Importantly, the use of Bayesian tests can reduce concerns with 
multiple comparisons (see Kruschke, 2010). For readers more familiar 
with null-significance hypothesis testing, we include the probabilities 
associated with the Bayes factors. 

2.5. Predictions 

We adjudicated between three models of object representation based 
on the resolution of memory as a function of the number of objects (i.e., 
set size 1 compared to set size 2) and the number of to-be-remembered 
features within each object (i.e., single-feature compared to both-feature 
conditions). 

2.5.1. Object-based models 
According to these models, the features composing objects are 

thought to be integrated (Fig. 1a). A purely object-based model predicts 
that memory resolution is entirely constrained by the number of objects 
rather than by the number of to-be-remembered features (Fig. 5a). Thus, 
memory resolution should not differ between the single-feature and 
both-feature conditions for the same set size, as these conditions differed 
only by the number of to-be-remembered features (and did not differ by 
the number of objects). Instead, memory performance should be reduced 
only when comparing memory resolution for one object (i.e., set size 1) 
compared to two objects (i.e., set size 2). 

2.5.2. Feature-based models 
According to these models, the features composing objects are 

thought to be independent (Fig. 1b). A purely feature-based model 
predicts that memory resolution is entirely constrained by the number of 
features held in memory, rather than by the number of objects (Fig. 5b). 
Thus, memory resolution should be highest when one feature is task- 
relevant (e.g., set size 1, single-feature condition), followed by when 
two features are task-relevant (e.g., set size 2, single-feature condition 
and set size 1, both-feature condition), followed by when four features 
are task-relevant (e.g., set size 2, both-feature condition). 

2.5.3. Object + Features models 
According to these models, the features composing objects are 

thought to be represented both as an integrated code and as independent 
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features. Here, memory resolution is constrained both by the number of 
objects and by the number of to-be-remembered features (Fig. 5c). Thus, 
resolution should be highest when only one feature is task-relevant 
within one object (e.g., set size 1, single-feature condition). Increasing 
the number of task-relevant features within an object should reduce 
resolution (e.g., set size 1, both-feature condition). However, resolution 
should be further reduced when two objects are displayed within two 
features (e.g., set size 2, single-feature condition), with the lowest res-
olution observed when four features are displayed within two objects (e. 
g., set size 2, both-feature condition). 

2.5.4. Stochastic dependence model of feature integration 
In a purely object-based account, shapes and colors are completely 

dependent (Fig. 6a). In an example of purely object-based memory, 
shape and color would be reconstructed together in an entirely all-or- 
nothing manner, such that the resolution of both features perfectly co-
vary (i.e., when shape is reconstructed in high-resolution, color is also 
reconstructed in high-resolution). 

In a purely feature-based account, shapes and colors are completely 
independent (Fig. 6b). In an example of purely feature-based memory, 
shape and color reconstructions would not influence each other (i.e., one 
feature can be reconstructed in high resolution with no influence on the 
resolution of the other feature). 

Finally, evidence of both independence and dependence would 

support Object+Features models (Fig. 6c). In an example of an inte-
grated code and independent features, the resolution of shape and color 
reconstructions covary more often than chance (i.e., evidence of 
dependence), but the resolution of individual features can nevertheless 
differ from each other (i.e., evidence of independence). 

3. Results 

Anonymized data and commented code are available on the Open 
Science Framework: https://osf.io/976ta/. 

3.1. Memory resolution 

Shape and color responses were binned in a data-driven manner by 
varying the cut of circular space four ways (Fig. 5d), ranging from fine- 
grained (i.e., 25% quantile; responses near-perfect in resolution to the 
target) to “yes” responses (i.e., 90% quantile; roughly corresponding to 
“yes” responses on a discrete accuracy measure, which include mem-
ories that range from higher to lower resolution to the target). Linear 
mixed models examined the proportion of responses within each bin as a 
function of the number of objects (i.e., set size 1 and set size 2) and the 
number of to-be-remembered features (i.e., single-feature and both- 
feature conditions). For raw error distributions and mean absolute 
error analyses, see Supplemental Material. Importantly, the analysis 

Fig. 5. (a-c) Predictions of the different models. (a) A purely object-based account predicts reduced memory as the number of objects increase, regardless of the 
number of to-be-remembered features within each object. (b) In contrast, a purely feature-based account predicts reduced memory as the number of to-be- 
remembered features increase. (c) An Object+Features account predicts reduced memory as both the number of objects and to-be-remembered features increase. 
(d) Based on participant responses in the single-feature condition at set size 1, cuts on circular space were defined to create quantiles which include 25% (fine-grained 
responses) and 90% (“yes”) of all responses. Critically, the “yes” bin (90% quantile) includes responses that range from higher to lower resolution, akin to discrete 
yes/no metrics such as accuracy on a change detection task. (e, f) Experiment 1 results. Fine-grained (e) shape and (f) color responses were reduced by both the 
number of objects presented (set size 1 vs. set size 2) and the number of to-be-remembered features (single- vs. both-feature condition) – supporting an 
Object+Features account that posits the presence of both object- and feature-based representations. In contrast, “yes” shape and color responses were reduced only by 
the number of objects presented, not the number of to-be-remembered features – supporting a purely object-based account that posits integrated object-based 
representations. Error bars reflect the 95% CI for the condition mean. 
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based on mean absolute error was not sensitive to differences between 
conditions at the highest memory resolution, supporting the usefulness 
of our analytical approach (Fig. S3a, b). 

For fine-grained shape responses (25% quantile, Fig. 5e), a linear 
mixed model found a main effect of the number of objects (F1, 84 =

141.83, p < 0.001, partial r2 = 0.63) and a main effect of the number of 
to-be-remembered features (F1, 84 = 12.34, p < 0.001, partial r2 = 0.13), 
with no interaction (F1, 84 = 3.47, p = 0.066). For fine-grained color 
responses (25% quantile, Fig. 5f), a linear mixed model found a main 
effect of number of objects (F1, 84 = 61.13, p < 0.001, partial r2 = 0.42) 
and a main effect of the number of to-be-remembered features (F1, 84 =

25.24, p < 0.001, partial r2 = 0.23), with no interaction (F1, 84 = 0.013, p 
= 0.91). For both fine-grained shape and color (25% quantile), 
increasing the number of objects (from set size 1 to set size 2) and the 
number of to-be-remembered features (from single-feature to both- 
feature conditions) decreased the proportion of responses. These re-
sults were replicated for the bins corresponding to 50% and 75% 
quantiles, which contained increasingly lower resolution responses (see 
Fig. S2 in Supplemental Material for statistical analyses). 

For “yes” shape responses (90% quantile, Fig. 5e), a linear mixed 
model found a main effect of the number of objects (F1, 84 = 167.99, p <
0.001, partial r2 = 0.67), with no main effect of the number of to-be- 
remembered features (F1, 84 = 0.74, p = 0.39) or interaction (F1, 84 =

1.01, p = 0.32). For “yes” color responses (90% quantile, Fig. 5f), a 
linear mixed model found a main effect of the number of objects (F1, 84 =

62.00, p < 0.001, partial r2 = 0.42), with no main effect of the number of 
to-be-remembered features (F1, 84 = 0.78, p = 0.38) or interaction (F1, 84 
= 0.53, p = 0.47). Taken together, these results indicate that increasing 
the number of objects (from set size 1 to set size 2) decreased the pro-
portion of both “yes” shape and color responses, whereas increasing the 
number of to-be-remembered features (from single feature to both- 
feature conditions) did not. 

3.2. Summary of memory resolution 

The proportion of responses in all bins decreased as the number of 
objects increased (i.e., controlling for the number of to-be-remembered 
features, we observed a main effect of number of objects). Moreover, the 
proportion of responses decreased in all bins except for “yes” responses 
as the number of features increased (i.e., controlling for the number of 
objects, we observed a main effect of number of to-be-remembered 
features). In other words, memory resolution was reduced when par-
ticipants remembered two objects with one feature each (i.e., two ob-
jects, two features total) compared to when participants remembered 
one object with two features (i.e., one object, two features total): fine- 
grained responses (25% quantile) for shape: t28 = 5.92, p < 0.001, 

Fig. 6. Stochastic dependence model predictions and results. (a) In a purely object-based prediction, shape and color reconstructions perfectly covary in their 
resolution (i.e., completely dependent: observed dependence = 100%). (b) In a purely feature-based prediction, shape and color reconstructions are completely 
independent (i.e., the resolution of shape has no influence on the resolution of color, and vice versa: observed dependence = 0%). (c) In an object+features pre-
diction, shape and color reconstructions are both independent and integrated (e.g., observed dependence = 50%). (d) Critically, we found more evidence of 
dependence as the bin contained increasingly lower resolution responses (e.g., 25%, 50%, 75%, and 90% quantiles). For example, there was primarily independence 
for fine-grained responses (25% quantile), as observed dependence was close to 0%. Although we found more evidence of dependence for “yes” responses (90% 
quantile), the resolution of shape and color was not completely dependent (i.e., observed dependence was substantially lower than 100%). These results suggest that 
feature-based representations can be higher in resolution than the integrated code, because we found more evidence of independence for fine-grained responses and 
more evidence of integration for “yes” responses. Error bars reflect the 95% confidence interval for the condition mean. 
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Cohen′s D= 0.87, and color: t28 = 1.97, p = 0.059, Cohen′s D = 0.27, 
“yes” responses (90% quantile) for shape: t28 = 6.83, p < 0.001, Cohen′s 
D = 0.89, and color: t28 = 3.90, p < 0.001, Cohen′s D = 0.60. In contrast, 
fine-grained but not “yes” responses were reduced when participants 
remembered one object with two features (i.e., one object, two features 
total) compared to one object with one feature (i.e., one object, one 
feature total): fine-grained responses (25% quantile) for shape: t28 =

3.24, p = 0.003, Cohen′s D= 0.49, and color: t28 = 3.12, p = 0.0042, 
Cohen′s D = 0.45, “yes” responses (90% quantile) for shape: t28 = 0.17, p 
= 0.87, and color: t28 = 0.16, p = 0.87). 

Overall, these results support an Object + Features model (Fig. 1c), 
because memory resolution was reduced both when the number of ob-
jects and the number of to-be-remembered features increased. Intrigu-
ingly, we found evidence that memory resolution for integrated and 
independent features can differ, as “yes” responses which included the 
lowest resolution responses of all bins were not influenced by the 
number of to-be-remembered features (see section 4. Interim Discussion 
and 7. General Discussion for elaboration on this point). 

3.3. Stochastic dependence model of feature integration 

We next examined the stochastic dependence between shape and 
color across all four response bins (Fig. 3). This analysis was conducted 
only for the both-feature condition (Fig. 3a), as it is only this condition 
that participants were instructed to accurately reconstruct both shape 
and color (see section 1.3. Procedure). Bayesian one-sample t-tests 
determined whether the observed dependence differed from complete 
independence (0%) and complete dependence (100%). For brevity, we 
report here the statistical results for fine-grained (25% quantile) and 
“yes” responses (90% quantile), whereas statistical results for the bins 
corresponding to 50% and 75% quantiles are reported in the Supple-
mental Material (Fig. S4). Data from all results is displayed in Fig. 6. 

There was no evidence that the observed dependence for fine- 
grained responses (25% quantile) was greater than 0% for trials with a 
single object (set size 1), BF10 = 0.27, P(p > 0) = 0.21, or trials with two 
objects (set size 2), BF10 = 0.98, P(p > 0) = 0.49, suggesting that shape- 
color responses highest in resolution were primarily independent. Crit-
ically, we found more evidence of dependence as the bins increasingly 
contained lower-resolution responses (Fig. 6). For “yes” responses (90% 
quantile), there was decisive evidence that the observed dependence 
was greater than 0% for trials with a single object (set size 1), BF10 =

165.78, P(p > 0) = 0.99, and decisive evidence that the observed 
dependence was greater than 0% for trials with two objects (set size 2), 
BF10 > 2000, P(p > 0) = 1.00. 

Although we found more evidence of dependence as quantiles 
increasingly contained low-resolution responses, responses in all quan-
tiles differed from the maximum dependence observable in the data for 
trials with one object, BF10 > 2000, P(p < 1) = 1.00, or trials with two 
objects (set size 2), BF10 > 2000, P(p < 1) = 1.00. In other words, 
although there was robust evidence of dependence (i.e., the observed 
dependence differed from 0% as quantiles increasingly contained lower- 
resolution responses, Fig. 6d), shape and color responses did not 
perfectly covary (i.e., the observed dependence differed considerably 
from 100% in all quantiles, Fig. 6d). 

3.4. Summary of stochastic dependence 

Converging stochastic dependence (Fig. 6) and memory resolution 
(Fig. 5) analyses revealed that object representations contain both an 
integrated code as well as independent features. We found primarily 
evidence of independence for fine-grained responses (25% quantile) and 
increasing evidence of dependence as response bins contained lower- 
resolution information (50%, 75%, and 90% quantile). Critically, we 
found the greatest evidence of dependence for “yes” responses (90% 
quantile) which contained the lowest resolution reconstructions of all 
bins (Fig. 6d). 

4. Interim discussion 

We developed a novel shape-color conjunction task to capture 
memory resolution for objects containing multiple component features 
(shape and color). We found evidence for both integrated object-level 
representations as well as independent feature-level representations. 
Consistent with an object-based account, increasing the number of ob-
jects (set size 1 to set size 2) reduced both fine-grained responses that 
were near-perfect in resolution to the target, as well as “yes” responses 
that contained both higher and lower resolution representations. 
Consistent with a feature-based account, increasing the number of to-be- 
remembered features within a single object (i.e., single-feature 
compared to both-feature condition within the same set size) reduced 
fine-grained responses. Importantly, the same manipulation did not 
impact “yes” responses – when the response type included both higher- 
and lower- resolution representations (i.e., the “yes” bin), there was no 
additional cost to remembering both features of objects (i.e., single- 
feature compared to both-feature condition). On the other hand, 
remembering both features of an object in high resolution (i.e., the fine- 
grained response bin) reduced the proportion of responses compared to 
remembering one feature in high resolution. These findings not only 
extend previous behavioral experiments that have found evidence of 
integrated object-based representations (Balaban, Drew, & Luria, 2019; 
Fukuda et al., 2010; Luck & Vogel, 1997; Zhang & Luck, 2008), but also 
support neuroimaging-based models positing the hierarchical and 
distributed organization of objects and their component features 
(Barense et al., 2012; Cowell et al., 2019; Erez et al., 2016; Lee et al., 
2012; Liang et al., 2020). Our results are most consistent with an 
Object+Features model rather than a purely object- or feature-based 
model (Fig. 1), as our results reveal that object representations 
contain both an integrated code as well as independent features (Figs. 5, 
6). 

Using our shape-color conjunction task, we replicate an influential 
paradigm originally tested using a change detection task which found 
that memory capacity was constrained by the number of objects held in 
mind rather than by the number of features (Luck & Vogel, 1997). 
Extending this work, however, we found that high resolution memory 
was also influenced by the number of individual features. What might 
explain these seemingly contradictory results? Past work finding inte-
grated object representations primarily use discrete accuracy metrics (e. 
g., yes/no, same/different, old/new). These discrete tasks do not 
necessarily distinguish between a high- or low-resolution memory; that 
is, a participant may be able to succeed on these discrete tasks with a 
coarse-grained memory of a target object. For example, if the foils on a 
change detection task are categorically dissimilar, a participant can 
succeed on this task with only coarse-grained information (e.g., memory 
for a shade of blue that did not exactly match the target blue). Indeed, 
we replicated the original finding that memory was constrained by the 
number of objects when we analyzed responses using the “yes” response 
bin (Fig. 5 g, k). Notably, this “yes” response bin was designed to mimic 
“yes” responses on a discrete task, which include both higher to lower 
resolution memories (Fig. 2). In contrast, when we analyzed responses 
using the fine-grained response bin, we found that memory was now also 
constrained by the number of to-be-remembered features. Importantly, 
these response bins were derived in a data-driven manner by varying the 
cut of circular space based on participant responses, allowing us to 
equate the distributional properties between the shape and color stim-
ulus spaces. Furthermore, an analysis of mean absolute error was found 
to be insensitive to representations at the highest resolution (Fig. S3a, b 
in Supplemental Material). Thus, our results suggest that whether object- 
based or feature-based representations are observed in an experiment 
may be contingent upon whether the task itself requires high- or lower- 
resolution memory of the target. Continuous tasks like the one employed 
here may be better placed to investigate memory at multiple levels of 
resolution (e.g., as with the present study, comparisons using the fine- 
grained and “yes” response bins). 
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In Experiment 1, memory resolution was reduced when participants 
remembered one object with two features compared to two objects with 
one feature each (i.e., the number of objects differed while the number 
of features were held constant), which we interpret as evidence of in-
tegrated object representations in memory (Fig. 5). However, this dif-
ference in memory resolution could have been instead driven by the 
number of spatial locations rather than by the number of objects. That is, 
trials with one object always included one task-relevant spatial location 
whereas trials with two objects always included two task-relevant 
spatial locations (Fig. 3a). The number of objects and the number of 
spatial locations was therefore conflated in Experiment 1, leading to the 
possibility that shapes and colors were bound to a shared spatial location 
rather than to each other in memory. Indeed, previous experiments have 
found evidence not only that spatial location influences memory for 
object identity (Cai et al., 2019; 2020; Golomb et al., 2014; Oberauer 
and Lin, 2017), but some experiments have suggested that object fea-
tures are bound entirely by virtue of their shared spatial location 
(Kovacs & Harris, 2019; Pertzov & Husain, 2014; Schneegans & Bays, 
2017). In Experiment 2, we applied our shape-color conjunction task to 
test whether shape and color can be bound directly to each other or 
bound by virtue of a shared spatial location in memory. Manipulating 
the nature of distracting information, feature integration was disrupted 
when distractors shared the same visual features as target objects but 
was not influenced when distractors shared the same spatial location – 

suggesting that visual object features can be directly bound to each other 
in a manner not entirely accounted by shared spatial location. 

5. Experiment 2 

5.1. Participants 

Thirty participants were recruited from the undergraduate partici-
pant pool at the University of Toronto and from the community. Par-
ticipants from the undergraduate pool received course credit whereas 
participants from the community received $20 CAD. One participant 
was excluded prior to data analysis as they did not complete all trials of 
the experiment. Two participants performed at chance and were 
excluded. The final sample size contained 27 individuals (Mean 
age = 19.85 years, SD = 2.25 years, Females = 20). 

5.2. Procedure 

During the study phase of every trial, a target shape-color object was 
presented. Objects were drawn from a random position from circular 
shape and color space (Fig. 7). This target object was randomly dis-
played either on the left or right side of the monitor for 1000 ms. After a 
250 ms ISI, a colored mask was displayed for 350 ms to prevent visual 
afterimages. Five distractor objects were then sequentially displayed for 

Fig. 7. Experiment 2 task design. (a) We manipulated the feature overlap (shape and spatial location) between irrelevant distractors and the target object in order to 
infer whether shapes and color where bound directly to each other or bound only to a shared spatial location. During the study phase, the target shape-color object 
was shown on either the left or right side of the monitor. Next, distractors were sequentially displayed during an n-back task in four possible conditions. During the 
test phase, the shape-color conjunction task appeared at the location that had contained the target object during the study phase. An item corresponding to the 
position of the cursor was displayed, such that shape and color changed continuously on a 2D circle. After a mouse response, participants fine-tuned their selection. 
For illustrative clarity, we have enlarged the target object and kept it consistent across all conditions. Dashed line boxes were not shown during the actual 
experiment. (b) Distractor shapes were either identical or dissimilar relative to the target shape (sampled from the opposite side of circular shape space, shown in 
teal). Distractor colors were always dissimilar relative to the target color, such that color information was equated across conditions (sampled from the opposite side 
of circular color space). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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350 ms each, interleaved with a 250 ms ISI. One of the distractors 
repeated (i.e., n-back task) and participants were instructed to respond 
with the spacebar key when a repeat was detected. We emphasized that 
there could be multiple repeats each trial but in reality, only one object 
was ever repeated; this instruction was given to ensure that all distractor 
objects were attended. Participants were instructed to remember only 
the target shape-color object and not the distractor objects, as well as to 
guess if they could not remember. 

The color of distractor objects was always visually dissimilar relative 
to the target color. For this reason, distractor colors were sampled from 
the opposite side of circular color space relative to the position of the 
target color (Fig. 7). The shape of the distractor objects was either the 
same as the target or visually dissimilar (sampled from the opposite side 
of circular shape space). In addition, we varied whether spatial location 
was the same as the target or dissimilar (on the opposite side of the 
display). These parameters led to four experimental conditions (Fig. 7b): 
1) same shape & same location, 2) different shape & same location, 3) 
same shape & different location, 4) different shape & different location. 

Critically, we controlled for several potential confounding factors in 
this design. First, the amount of color information in each condition was 
equated because target colors were always sampled from a random 
position on circular color space and distractor colors were always 
visually dissimilar relative to the target object. Second, the amount of 
information present at the study and test phases was equated across 
conditions. Participants always studied a single target object during the 

study phase and reconstructed this target object using the shape-color 
conjunction task during test, ensuring that only a single object was 
task-relevant in all conditions. Third, we only analyzed trials in which 
the n-back task was correct, ensuring that participants paid attention in 
all analyzed trials. We examined how integration for the target shape- 
color object – whereby the amount of color information was equated 
across all conditions – was impacted by whether the shape and spatial 
location of irrelevant distractors overlapped with the target. 

5.3. Statistical analysis 

We determined the size of circular space for shape and color indi-
vidually at the 25%, 50%, 75%, and 90% quantiles, using all trial-wise 
participant responses from the same shape & same location condition. 
Overall, this approach resulted in the following cuts of circular space: 
25% quantile (fine-grained responses) for shape at 4◦ error and color at 
8◦ error; 50% quantile for shape at 9◦ error and color at 20◦ error; 75% 
quantile for shape at 17◦ error and color at 42◦ error; and 90% quantile 
(“yes” responses) for shape at 33◦ error and color at 110◦ error. Notably, 
the size of bins differed for shape and color because participants were 
reminded by the distractor shapes, whereas color memory was disrupted 
by dissimilar interference. 

Here, we specifically interpreted our stochastic dependence model 
which provides the strongest evidence of feature integration (Fig. 4c). In 
other words, we examined how the nature of distracting information 

Fig. 8. Experiment 2 stochastic dependence predictions and results. (a) If shape and color are directly bound to each other, the observed dependence between shape 
and color will be disrupted when the shape of distractor objects is identical to the shape of the target. (b) If shape and color are bound to a shared spatial location, the 
observed dependence between shape and color will be disrupted when the spatial location of distractors are identical to the spatial location of the target. (c) If shape 
and color are both bound to each other and to spatial location, the observed dependence between shape and color will be disrupted both when the shape and the 
spatial location of distractor objects are identical to the target. (d, e) Experiment 2 stochastic dependence results. Distractors sharing the same shape as the target 
disrupted the observed dependence between the target shape-color pairing. In contrast, there was no evidence that showing interfering material at the same spatial 
location as the target object influenced the observed dependence between the target shape-color pairing. These data are consistent with the notion that shape and 
color can be bound to each other in a manner not entirely accounted by their shared spatial location. Error bars reflect the 95% confidence interval for the con-
dition mean. 

A.Y. Li et al.                                                                                                                                                                                                                                     



Cognition 223 (2022) 105024

14

influenced the observed dependence between features of a target object 
(see Andermane, Joensen, & Horner, 2021). 

5.4. Predictions 

5.4.1. Shape-color binding 
If shapes and colors are directly bound to each other, then the 

observed dependence between shape and color should be decreased by 
distractors sharing the same shape as the target object (Fig. 8a). For 
example, remembering the color of a target apple would be more diffi-
cult due to competing interference from other apples of different colors. 

5.4.2. Spatial binding 
If the shape and color features are bound to a shared spatial location, 

then the observed dependence between shape and color should be 
decreased by distractors sharing the same spatial location as the target 
object (Fig. 8b). For example, remembering the color of a target apple 
would be more difficult due to competing interference from other fruit in 
the same location as the target apple. 

5.4.3. Shape-color-spatial binding 
A final possibility is that shapes and colors are both directly bound to 

each other as well as to their shared spatial location. In this prediction, 
the observed dependence between the target shape-color object should 
be decreased by both the shape and the spatial location of distractor 
objects (Fig. 8c). For example, remembering the color of a target apple 
would be more difficult due to competing interference from apples that 
differ in their color in the same spatial location as the target apple. 

6. Results 

Anonymized data are available on the Open Science Framework: htt 
ps://osf.io/976ta/. 

6.1. Stochastic dependence 

Irrelevant distractor shape but not irrelevant distractor location 
decreased the observed dependence between participant shape-color 
responses. For fine-grained responses (25% quantile), there was a 
main effect of distractor shape (F1, 78 = 4.76, p = 0.032, partial r2 =

0.057), no main effect of distractor location (F1, 78 = 0.0023, p = 0.96), 
and no interaction between distractor shape and location (F1, 78 = 0.99, 
p = 0.32), such that observed dependence between shape and color 
decreased when irrelevant distractors overlapped in their shape but not 
their spatial location with the target (Fig. 8d). Similarly, for “yes” re-
sponses (90% quantile), there was a main effect of distractor shape (F1, 

78 = 4.74, p = 0.032, partial r2 = 0.057), no main effect of distractor 
location (F1, 78 = 0.82, p = 0.37), and no interaction between distractor 
shape and location (F1, 78 = 0.10, p = 0.75) on observed dependence 
(Fig. 8e). See Fig. S5 in the Supplemental Material for detailed statistics for 
the bins corresponding to 50% and 75% quantiles. 

Replicating Experiment 1 (Fig. 6d), we found primarily evidence of 
independence for fine-grained responses (25% Quantile) near-perfect in 
resolution. There was no evidence that observed dependence was 
greater than 0% for the same shape & same location condition 
(BF10 = 0.18, P(p > 0) = 0.15) or the same shape & different location 
condition (BF10 = 0.11, P(p > 0) = 0.099). There was also no evidence 
that observed dependence was greater than 0% for the different shape & 
same location condition (BF10 = 0.57, P(p > 0) = 0.36), and anecdotal 
evidence that observed dependence was greater than 0% for the 
different shape & different location condition (BF10 = 1.85, P(p > 0) =
0.65). 

Also replicating Experiment 1 (Fig. 6d), we found robust evidence of 
dependence for “yes” responses (90% Quantile) which included re-
sponses ranging from high- to lower-resolution. There was decisive ev-
idence that observed dependence was greater than 0% for the same 

shape & same location condition (BF10 = 229.97, P(p > 0) = 1.00) and 
strong evidence for the same shape & same location condition 
(BF10 = 21.44, P(p > 0) = 0.96). There was also decisive evidence that 
observed dependence was greater than 0% for the different shape & 
same location condition (BF10 = 820.43, P(p > 0) = 1.00) and decisive 
evidence for the different shape & same location condition 
(BF10 = 117.79, P(p > 0) = 0.99). Although the resolution of shape and 
color covaried more often than chance, the observed dependence 
differed substantially from 100% in all quantiles and conditions (BF10 >

2000, P(p < 1) = 1.00), suggesting that the resolution of shape and color 
did not perfectly covary. 

Overall, the dependence between shape and color was disrupted 
when distractors shared the same shape as the target object. In contrast, 
we found no evidence that distractors overlapping in spatial location 
disrupted dependence in any stochastic dependence analysis. These re-
sults suggest that shape and color can be directly bound to each other in 
a manner that cannot be entirely accounted by their shared spatial 
location. That is, distractors sharing the same shape as the target dis-
rupted dependence between the target shape and color memory, 
whereas distractors sharing the same spatial location as the target did not 
influence dependence between the target shape and color. See Supple-
mental Material for the memory resolution analyses (Fig. S6, S7), results 
which were consistent with our interpretation of direct binding between 
shape and color that could not be entirely accounted by the shared 
location of features. 

7. General discussion 

In two experiments, we sought to understand how constituent visual 
features are integrated to form objects in memory. We developed a novel 
shape-color “conjunction task” to reconstruct the memory resolution of 
object features simultaneously in a single response (Fig. 2). Relative to 
traditional discrete tasks (e.g., change detection), our task allows for 
more precise quantification of both high- and low-resolution memories. 
Furthermore, our task assessed the resolution of multiple object features 
simultaneously in a single response. Depending on the research ques-
tion, simultaneous tasks may offer an advantage relative to established 
sequential continuous tasks that may underestimate the possible 
dependence between object features. In a first experiment, we replicate 
and extend a paradigm originally tested using a change detection task by 
experimentally manipulating the number of objects and to-be- 
remembered features (Luck & Vogel, 1997). We found that memory 
was impacted both by the number of objects and to-be-remembered 
features, consistent with Object + Features models that posit a hierar-
chical and distributed code underlying the representation of objects and 
their component features (Fig. 1c). To delineate whether features were 
bound directly to each other or by virtue of shared spatial location, a 
second experiment manipulated the type of task-irrelevant distracting 
information. In this second experiment, distracting feature information 
disrupted integration regardless of its spatial location, providing evi-
dence that shapes and colors can be directly bound to each other in a 
manner not entirely accounted by their shared location (also see Sone 
et al., 2021). 

Although we found evidence of integration and independence be-
tween object features, the finding that shared spatial location did not 
drive feature integration may be surprising, as previous studies have 
suggested that object features may be bound entirely by virtue of their 
spatial location (Pertzov & Husain, 2014; Schneegans & Bays, 2017), as 
well as evidence suggesting that spatial location can play an important 
role for binding an object to a position within the environment (i.e., 
object-in-place memory; Cai, Fulvio, Yu, Sheldon, & Postle, 2020; 
Golomb et al., 2014; Hollingworth, 2007; Kovacs & Harris, 2019; Reagh 
& Yassa, 2014; Tsao, Moser, & Moser, 2013; Yeung et al., 2019; Yone-
linas, Ranganath, Ekstrom, and Wiltgen, 2019). One important differ-
ence between our task in the second experiment (Fig. 7) and previous 
literature is that we neither tested memory for spatial location nor made 
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spatial location task-relevant. In other words, although participants 
were required to remember both shape and color at study and were 
required to reconstruct both shape and color at test, participants did not 
need to remember spatial location at any time during our task. By de- 
emphasizing the role of spatial location, we provide an explicit 
demonstration that the shape and color features of an object can be 
bound directly to each other in memory in a manner that could not be 
entirely accounted by shared spatial location. Following this logic, 
spatial location can likely become a more important property for feature 
binding in tasks that emphasize spatial location through a response at 
test (Schneegans & Bays, 2017) or through multiple study positions 
during the study phase of an experiment (Golomb et al., 2014; Kovacs & 
Harris, 2019; Pertzov & Husain, 2014). 

As we have found robust evidence of independence between fea-
tures, could a purely feature-based model account for our findings of 
integration (Fig. 1b)? For example, could it be the case that on some 
trials cognitive resources are flexibly directed towards features, such 
that participants represent one feature in high resolution at the expense 
of another object feature (potentially accounting for independence in 
the fine-grained response bin; Fig. 6d), whereas on other trials, partic-
ipants direct cognitive resources towards both object features, resulting 
in a seemingly integrated but lower resolution response (accounting for 
dependence in the “yes” response bin; Fig. 6d)? We argue that this 
possibility is unlikely for two reasons. First, Experiment 1 manipulated 
the number of objects and number of to-be-remembered features. If 
objects were represented in an entirely feature-based manner, then there 
should be no difference between the condition with 1 feature displayed 
in 2 objects (2 features total) compared to the condition with 2 features 
displayed in 1 object (2 features total). Yet, we observed a robust drop in 
memory resolution where the number of to-be-remembered features 
were equated but the number of objects varied (Fig. 5), suggesting the 
presence of an integrated code. Second, if participants adopted a 
particular strategy whereby cognitive resources are directed towards a 
single object feature at the expense of another, then we should observe 
anti-dependence in our stochastic dependence model (Fig. 4). For 
example, if participants only represented shape in high resolution on 
50% of trials (and not color), or color in high resolution on 50% of trials 
(and not shape), then the probability of reconstructing shape and color 
together would be 0% even though the predicted independence would 
be 25%, resulting in a negative value in the model. The observed shape- 
color data did not differ from the predicted independence (i.e., observed 
dependence did not differ from 0%, Fig. 6d), suggesting that participants 
did not preferentially direct cognitive resources towards single features 
in high resolution at the expense of the other feature. 

Conversely, could a purely object-based theory of memory account 
for our findings (Fig. 1a)? For example, influential “slot” models of vi-
sual short-term memory predict that features are integrated when pre-
sent in memory and thus, object features would perfectly covary in 
resolution. Our results do not support extreme versions of this 
perspective. For example, shape and color exhibited dependence for 
“yes” responses but not fine-grained responses, suggesting that when 
one object feature is represented at high resolution, the other object 
feature can be represented at a lower resolution in a dependent manner 
(Fig. 6). Relatedly, how might our results compare to findings based on 
an influential mixture model separating “precision” from “guessing” 
(Zhang & Luck, 2008)? Although this previous study did not manipulate 
the number of features within the same object, Zhang and Luck (2008) 
found evidence that there was a fundamental capacity limit to the 
number of high-resolution items held in mind. Here, perhaps our find-
ings of independence and integration can be reconciled with slot models 
by characterizing multiple representational levels. For example, we can 
consider an architecture whereby integrated object representations are 
present in addition to representations of the individual features 
comprising that object, such that there may be different capacity limits 
for multiple representational levels concurrently held in mind. This 
perspective would be consistent with behavioral evidence of features 

and their integration (Cowan, Saults and Blume, 2014; Hardman & 
Cowan, 2015; Markov et al., 2019; Markov et al., 2021; Oberauer & 
Eichenberger, 2013; Olson & Jiang, 2002; Sone et al., 2021; Wheeler & 
Treisman, 2002) and well-supported by neuroimaging work character-
izing multiple levels of object representation (Coutanche & Thompson- 
Schill, 2015; Erez et al., 2016; Jung et al., 2018; Liang et al., 2020; 
Martin et al., 2018). For this reason, better understanding how mea-
surement models of short-term memory (such as the mixture model) 
relate to simultaneous continuous tasks may be a fruitful avenue of 
future investigation (Oberauer, 2021). 

Finally, could idiosyncratic properties of our simultaneous 
conjunction task or extraneous factors such as noise explain the findings 
of integration and independence? For example, perhaps shape and color 
perfectly covary in their resolution as predicted by a purely object-based 
model (Fig. 1a, Fig. 6a), but noise at test due to properties of our task or 
differences in attention across trials artificially induce independence 
between features at the highest memory resolution. This explanation is 
unlikely for both theoretical and methodological reasons. Theoretically, 
if the resolution of object features perfectly covary within an integrated 
representation and were only influenced by noise or fluctuations in 
attention, then noise should be correlated between both object features 
(i.e., both features tend to be represented in high-resolution during low 
noise, or both features tend to be represented in low-resolution during 
high noise, as noise would influence a single integrated representation). 
Contrary to this prediction, shape responses in the fine-grained bin could 
be reconstructed in high-resolution whereas color could not (and vice 
versa; see Fig. 6d). Critically, the independence between high-resolution 
shape and color suggests that either features can differ in resolution from 
the integrated code or that noise can impact features individually – here, 
both cases imply the existence of independent feature-based represen-
tations. Methodologically, we selected our response bins in a data-driven 
manner based on quantiles (Fig. 2). Memory resolution for shape and 
color did not perfectly covary in any quantile, with “yes” responses (90% 
quantile) accounting for only approximately 30% of the maximum 
observable dependence in the data (Fig. 6d). It would be challenging to 
account for the low observed dependence based on noise alone, because 
we found robust evidence of independence even in a condition where 
participants reconstruct a single shape-color object. In Experiment 2, we 
equated differences in attentional demand because the study and test 
phases were identical across conditions and only n-back correct trials 
were analyzed. Nevertheless, we find explicit evidence of integration 
and independence in Experiment 2 that was modulated by the type of 
distracting information, even when differences in attentional demand 
between conditions were equated (Fig. 8). These data suggest that 
feature integration can be modulated by the nature of interference, such 
that shape-color object responses can appear more feature-like after 
irrelevant shape interference rather than irrelevant spatial location 
interference. For these reasons, we suggest that our data are best sup-
ported by an Object+Features perspective, rather than by purely object- 
or feature-based accounts. 

Taken together, we find integration and independence between 
features of a shape-color object that is broadly consistent with our 
previous work on a simultaneous conjunction task with simpler 
orientation-color stimuli (Sone et al., 2021). In three experiments, we 
previously found that the resolution of orientation-color objects 
exhibited dependence across both simultaneous conditions (both fea-
tures reconstructed at the same time at test) and sequential conditions 
(one feature reconstructed then the other at test). However, our previous 
study (Sone et al., 2021) found that the sequential version of the 
orientation-color conjunction task induced more independence between 
features at test compared to the simultaneous version of the task, sug-
gesting that object representations can appear more or less independent 
depending on task requirements. In the current study, we advance this 
work with two experiments that employed novel measures of memory 
resolution based on data-driven quantiles. Furthermore, we applied a 
data-driven statistical model of stochastic dependence, finding that a 
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framework which incorporates both integration and independence be-
tween features is most consistent with the format of how objects are 
represented in mind. 

Critically, we also provide new evidence showing that the resolution 
of independent features can differ from the resolution of the integrated 
code. In Experiment 1, the number of to-be-remembered features 
influenced memories near-perfect in resolution (i.e., the fine-grained 
response bin) but not “yes” responses which included both higher and 
lower resolution memories (Figs. 3, 5). This finding implies that memory 
for individual features can be held in higher resolution than memory for 
their integration. Had the resolution of the integrated code been 
equivalent to memory resolution for the individual features, we should 
not have observed any differences in memory resolution between con-
ditions with the same number of objects but a different number of to-be- 
remembered features (e.g., the condition with one feature displayed in 
one object compared to the condition with two features displayed in one 
object; Fig. 5). In other words, features from the same object should 
perfectly covary if the integrated code is higher in resolution than the 
individual features. However, our data-driven statistical model of sto-
chastic dependence (Figs. 4, 6) found the strongest evidence of inte-
gration for responses that included low resolution reconstructions, 
suggesting that individual features can be represented at a higher res-
olution than the integrated code. Results from the stochastic dependence 
analysis were replicated in Experiment 2 (Fig. 8), again suggesting that 
feature-based representations can be higher in resolution compared to 
the integrated code. 

Why might the resolution of the integrated code differ from the 
resolution of independent features? Integrated representations are 
necessary for object invariance (Rolls, 2012), whereby we can correctly 
recognize an object despite variation in lighting, visibility, or viewpoint. 
For example, we can recognize our blue umbrella on the beach, even if 
the umbrella’s color changes due to a shadow cast by an overhead cloud. 
Despite subtle changes in fine-grained appearance, we can nevertheless 
recognize our blue umbrella. In this scenario, it may be that memories 
held at a lower resolution are more flexible in accommodating these 
variations in appearance while supporting accurate object recognition. 
In contrast, object memories held in very high resolution may be intol-
erant to subtle changes in appearance and thus lead to an object being 
falsely recognized as a different entity. Indeed, it is well established that 
featural information can be represented in a highly detailed manner in 
sensory cortex (e.g., Ester, Anderson, Serences, & Awh, 2013; Katus 
et al., 2015; Rabagliati et al., 2017; Sreenivasan et al., 2014) and it may 
be advantageous to combine these high-resolution feature representa-
tions with a lower resolution integrated code in anterior regions of the 
neocortex. Such an architecture could represent information in high 
resolution and retain invariance without requiring a combinatorially 
explosive number of representations unique to each object viewpoint. 
This perspective is supported by one previous neuroimaging study 
which found dependence between “gist” memory of object color and 
spatial context operationalized using a mixture model, which may be 
comparable to the results of our “yes” response bin (Cooper & Ritchey, 
2019). Importantly, this previous study provides initial neural evidence 
that more integrated representations may be lower in resolution than 
less integrated representations (but see perspectives by Yonelinas, 2013; 
Ekstrom & Yonelinas, 2020). 

Although researchers have found dependence between lower- 
resolution object color representations bound to spatial context 
(Cooper & Ritchey, 2019), to our knowledge no neuroimaging studies 
have yet examined how the brain supports memory resolution for in-
tegrated and independent features for multiple features associated 
within the same object (e.g., shape and color). Instead, existing neuro-
imaging work have found that the integrated code itself can differ in 
several ways from the representation of independent features. Beginning 
with seminal investigations by Hubel and Wiesel (1969), the sensory 
cortex has been known to represent independent object features such as 
oriented line (Kamitani & Tong, 2005), color (Brouwer & Heeger, 2009), 

shape (Kourtzi & Kanwisher, 2000), and texture (Lieber & Bensmaia, 
2019). In addition to these posterior regions which represent feature- 
based information, anterior regions represent information about con-
junctions of object features in a hierarchical manner (Cowell et al., 
2019). For example, the parietal cortex seems to represent simple con-
junctions located in the environment (Cai et al., 2020; Todd & Marois, 
2004), and other regions such as the perirhinal cortex and hippocampus 
represent complex conjunctions containing multiple features bound to 
spatial and temporal context (Ekstrom & Yonelinas, 2020; Erez et al., 
2016; Martin et al., 2018; Robin, Buchsbaum, & Moscovitch, 2018; 
Yonelinas et al., 2019). Directly supporting an integrated code, experi-
menters have found evidence of object representations that are not the 
simple sum of constituent features (Erez et al., 2016; Liang et al., 2020). 
Furthermore, the specific characteristics of the integrated code and 
feature-based representations can differ with expertise, such that object 
features change in their representational similarity in parallel to changes 
at the level of the conjunction (Liang et al., 2020). 

Despite the wealth of neuroimaging and behavioral evidence sup-
porting feature-based representations in memory, some experiments 
have found evidence for only object-based representations in memory. 
For example, an influential change detection task found that remem-
bering 16 features distributed across four objects were as accurate as 
remembering four features displayed in four objects (Luck & Vogel, 
1997). These results have been used to support “slot models” (Fukuda, 
Awh, & Vogel, 2011; Zhang & Luck, 2008), extreme versions of which 
predict that memory resolution is entirely constrained by objects rather 
than their constituent features, and thus, object features perfectly covary 
in their resolution. However, this work was challenged by researchers 
finding evidence of feature-based representations when using contin-
uous tasks which assess memory resolution (Fougnie & Alvarez, 2011; 
Ma et al., 2014). Critically, when we interpret our results from Experi-
ment 1 using a “yes” response bin designed to mimic accuracy on a 
discrete change detection task, we replicate the original pattern of 
entirely object-based representations in memory. In other words, when 
we analyze our data using a response metric which included memories 
of both higher and lower resolution, we find no evidence of feature- 
based representations in our memory resolution analysis. However, 
when we isolated representations at the highest resolution using the 
fine-grained response bin on our continuous shape-color conjunction 
task, we then found explicit evidence of feature-based representations in 
memory. These analyses reveal that the type of response used to assess 
memory may have led to seemingly contradictory findings in the liter-
ature. Indeed, we were able to replicate both traditional discrete change 
detection tasks finding object-based representations and more recent 
continuous tasks finding feature-based representations, depending on 
the response type used to assess memory performance (i.e., fine-grained 
vs. “yes” responses for memory resolution analyses in Experiment 1, 
Fig. 5). 

Whereas discrete tasks such as change detection with very discrim-
inable stimuli may find evidence of only object-based representations, 
we suggest that continuous tasks are more sensitive to feature-based 
representations at the highest memory resolution. In the present 
study, we have designed a continuous shape-color task to simulta-
neously reconstruct multiple object features in a single response. Not 
only is our task potentially useful for studying the resolution of the in-
tegrated code and component features in future work, but the specific 
nature of the shape-color stimuli can be usefully adapted to study a 
range of phenomena. Given that recent models have proposed that 
subjective similarity may be especially important for understanding vi-
sual short-term memory (Schurgin et al., 2020), our task combines two 
well-controlled feature spaces validated on the basis of similarity. 
Indeed, both shape space (VCS space; Li, Liang, Lee, and Barense, 2020) 
and color space (CIELAB color space; Robertson, 1977) are explicitly 
defined such that distance along the stimulus space corresponds to 
subjective distance in visual similarity. Furthermore, the shape-color 
objects are unfamiliar to participants, allowing experimenters the 
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ability to isolate memory responses without the contribution of well- 
established object labels acquired over a lifetime of experiences 
(Souza et al., 2021). 

In conclusion, replicating and extending a classic paradigm using our 
novel continuous shape-color conjunction task, we find evidence for both 
integrated and independent feature representations in memory. More-
over, we found that shape and color can be directly bound to each other 
in a manner not entirely accounted by their shared spatial location. 
Finally, we provide new evidence that independent features from the 
same object can be represented in higher resolution than when those 
features are integrated, suggesting a resolution trade-off between high 
resolution individual features and lower resolution integrated objects. 
These results constrain models of feature integration, advancing the age- 
old question of how objects are represented in mind based on their 
constituent features. 
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