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Subjective similarity holds a prominent place in many psychological theories, influencing diverse
cognitive processes ranging from attention and categorization to memory and problem solving. Despite
the known importance of subjective similarity, there are few resources available to experimenters
interested in manipulating the visual similarity of shape, one common type of subjective similarity. Here,
across seven validation iterations, we incrementally developed a stimulus space consisting of 360 shapes
using a novel image-processing method in conjunction with collected similarity judgments. The result is
the Validated Circular Shape space, the first Validated Circular Shape space comparable to the commonly
used “color wheel”, whereby angular distance along a 2D circle is a proxy for visual similarity. This
extensively validated resource is freely available to experimenters wishing to precisely manipulate the
visual similarity of shape.
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Certain items are more similar than others. For example, we can
agree that a computer is more similar to a TV than to a dog. This
similarity judgment can be made on the basis of perceptual attri-
butes, such as the auditory (Aldrich, Hellier, & Edworthy, 2009),
gustatory (Pfaffmann, Bartoshuk, & McBurney, 1971), olfactory

(Guerrieri, Schubert, Sandoz, & Giurfa, 2005), tactile (Skedung et
al., 2013), and visual properties of an item (Wardle, Kriegeskorte,
Grootswagers, Khaligh-Razavi, & Carlson, 2016). Similarity judg-
ments can also be made on the basis of abstract attributes, such as
the functional properties of an item (Martin, Douglas, Newsome,
Man, & Barense, 2018), the category of an item (Charest, Kievit,
Schmitz, Deca, & Kriegeskorte, 2014; Jozwik, Kriegeskorte, &
Mur, 2016), and the shared contexts that items are typically en-
countered in (Ezzyat & Davachi, 2014). Here, the tendency for
observers to group items together on the basis of some character-
istic or set of characteristics is known as subjective similarity. An
extension to the construct of subjective similarity is subjective
variability, whereby the similarity within sets of items can range
from low to high. For example, the change in subjective similarity
within one set (e.g., laptop, computer, TV, headset) can be less
variable compared to another set (e.g., pen, dog, sofa, water
bottle).

Subjective similarity has a rich history in psychological research
(Attneave, 1950; Pothos, Busemeyer, & Trueblood, 2013; Tver-
sky, 1977); it is known to broadly influence cognitive processes
ranging from attention (Duncan & Humphreys, 1989) and catego-
rization (Goldstone, 1994) to memory (Jiang, Lee, Asaad, &
Remington, 2016; Sun, Fidalgo, et al., 2017; Yassa & Stark, 2011)
and problem solving (Novick, 1988). Not only is subjective sim-
ilarity frequently studied in behavioral experiments, subjective
similarity is also a key property underlying how the brain supports
cognition (Davis, Xue, Love, Preston, & Poldrack, 2014; Krieges-
korte, Mur, & Bandettini, 2008). Distributed patterns of neural
activity map onto subjective similarity for both nonhuman and
human primates, for stimuli ranging from simple lines to complex
faces (Kaneshiro, Perreau Guimaraes, Kim, Norcia, & Suppes,
2015; Martin et al., 2018; Mur et al., 2013). Such findings have
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spurred researchers to suggest that subjective similarity is an
organizing principle of the cortex, whereby there is an isomor-
phism between neural and cognitive representations of the world
(Davis et al., 2014; Kriegeskorte & Kievit, 2013).

Despite the known importance of subjective similarity, there is
a paucity of available resources that allow experimenters the
ability to precisely operationalize and manipulate the subjective
similarity of stimuli. Traditional methods involve the use of
experimenter-based intuition when designing stimuli or the use of
image-processing methods to mathematically adjust the pixel-wise
similarity between images (Busey, 1998). In particular, mathemat-
ical approaches have many advantages, including rapid stimulus
development and the parametric manipulation of similarity. How-
ever, purely mathematical approaches also have drawbacks, as
human observers do not always subjectively experience similarity
the same way as a mathematical measure (Busey, 1998; Larkey &
Markman, 2005), and thus subjective similarity may be inade-
quately captured. In some cases, this practice may be problematic
if study conclusions depend on precise estimates of subjective
similarity (Busey, 1998). In other cases, experimental conditions
that differ drastically on the basis of subjective similarity or
subjective variability may have later unintentional consequences
on the interpretation of the data. For example, memories can be
differentially influenced by subjective similarity: Memories can
become blurred in conditions where stimuli are subjectively sim-
ilar, whereas memories can become inaccessible in conditions
where stimuli are subjectively dissimilar (Sun, Fidalgo, et al.,
2017). Furthermore, conditions that differ on the basis of subjec-
tive variability cannot only differentially influence how items are
remembered (Hanczakowski, Beaman, & Jones, 2017; Lin &
Luck, 2009) but can also differentially alter how stimuli within
each condition capture attention (Becker, Folk, & Remington,
2013). To control for undesirable stimulus-driven effects, experi-
menters typically counterbalance stimuli across conditions and
participants, with the acknowledgment that this solution may re-
duce the power of finding desired outcomes.

Perceptually Uniform Spaces

In cases when counterbalancing is not possible or if a study
design requires a precise measure of subjective similarity, exper-
imenters typically collect similarity judgments in a domain such as
visual similarity (Hout, Goldinger, & Ferguson, 2013; Martin et
al., 2018; Kriegeskorte & Mur, 2012). In other cases, experiment-
ers sample stimuli from an already established perceptually uni-
form space. Perceptually uniform spaces contain stimuli mapped to
an n-dimensional space, whereby the spatial arrangement between
stimuli approximates their relations of visual similarity. One pop-
ular example is CIELAB color space, a commonly used 3D per-
ceptually uniform space (i.e., colors are defined on the basis of a
luminance dimension, a green–red dimension, and a blue–yellow
dimension) that mimics human trichromatic color vision (McDer-
mott & Webster, 2012; Robertson, 1990). CIELAB space was
developed and validated from foundational experiments conducted
in the early 20th century, whereby just noticeable differences to
color were derived from perceptual matching tasks (Brown &
MacAdam, 1949; Guild, 1931; Wright, 1929). For this reason,
CIELAB color space is a good approximation of visual similarity,
though this stimulus space is not a perfect match to human color

vision (Cheung, 2016). Indeed, increasingly sophisticated percep-
tually uniform color spaces have been developed to better account
for visual similarity, though even these newer spaces are not
perfectly analogous to color perception (Safdar, Cui, Kim, & Luo,
2017). It is important to emphasize that these perceptually uniform
spaces control for only visual similarity and do not necessarily
control for other types of subjective similarity. For example,
cross-cultural differences in categorical color boundaries (Abbott,
Griffiths, & Regier, 2016; Regier, Kay, & Khetarpal, 2007; Rob-
erson, Davies, & Davidoff, 2000; Zaslavsky, Kemp, Regier, &
Tishby, 2018), and other higher-order effects such as likability
(Labrecque & Milne, 2012) can all influence color judgments
beyond visual similarity (Taylor, Clifford, & Franklin, 2013). As
with any tool, experimenters will need to weigh the positives and
negatives to determine suitability for a given research question.
Nevertheless, perceptually uniform spaces are highly useful, al-
lowing for both the rapid stimulus selection afforded by mathe-
matical approaches to similarity as well as a principled method to
control for visual similarity, one common type of subjective sim-
ilarity.

To simplify the stimulus set, experimenters often reduce the
dimensionality of CIELAB color space to a 2D circular space (i.e.,
a “color wheel”; Figure 1A). By holding luminance constant,
stimuli are then sampled from the circumference of a circle so that
hue varies incrementally (Ma, Husain, & Bays, 2014). Importantly,

Figure 1. (A) Rendition of 3D CIELAB color space, whereby visual
similarity can be approximated by the Euclidean distance between colors.
After controlling for luminance on the y-axis of the figure above, a 2D
circle can be defined so that hue varies incrementally. (B) There are two
ways to consider visual similarity on a circular space. An ideal circular
space is perceptually uniform, meaning that two items sampled from any
distance are about as similar as any two other items sampled from the same
distance. For example, pairs of stimuli in each row on the figure above are
sampled every 60 degrees distance (�). This property allows experimenters
to equate the variation of similarity from one stimulus to the next. Second,
on an ideal circular space, the magnitude of visual similarity can be
approximated by angular distance. In the example above, pairs of colors
(displayed in each row) sampled closer in angular distance tend to be more
similar than pairs of colors sampled further away. This property allows
experimenters to characterize the amount of visual similarity along a
continuum. See the online article for the color version of this figure.
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there are two ways to define similarity on circular color space
(Figure 1B). First, the circular space can be said to be perceptually
uniform, meaning that colors sampled from any distance apart are
about as visually similar as any other colors sampled from that
same degrees’ distance. Using this property, subjective variability
can be controlled by sampling stimuli from equidistant angular
positions on circular space (i.e., using the perceptually uniform
property; Figure 1B). Thus, the change in visual similarity from
one stimulus to the next is equivalent across the set. Researchers in
the vision sciences frequently apply this method to control the
variation of visual similarity, such as when using color stimuli
(Brouwer & Heeger, 2009, 2013; Zhang & Luck, 2008). The
perceptually uniform property has also been useful in understand-
ing how the brain supports color perception (Brouwer & Heeger,
2009, 2013). For example, the relational structure of circular color
space was reconstructed from spatially distributed patterns of
neural activity in area V4 and VO1 but not from earlier visual
regions, even though earlier visual areas contained decodable
information about color hue (Brouwer & Heeger, 2009). These
results suggest that subjective color perception emerges from later
areas of the visual processing stream, an example of how the
perceptually uniform property of circular space can aid our under-
standing of the neural mechanisms involved in color perception.

Second, the magnitude of visual similarity can be approximated
by angular distance on a circular space, meaning that colors
sampled from closer distances tend to be more visually similar
than colors sampled from further distances. Here, it is important to
realize that there are two distinct properties on circular space. The
perceptually uniform property captures information about the re-
lations of visual similarity at the level of the set, in contrast,
angular distance approximates how much similarity changes rela-
tive to a single item (i.e., using the magnitude property; Figure
1B). For example, relative to orange, colors positioned closer in
angular distance (e.g., red) are more visually similar than colors
positioned further in angular distance (e.g., blue). Depending on
the research question, angular distance may be adequate as an
approximation of the magnitude of visual similarity. However, for
cases in which an experimenter wishes to precisely measure the
magnitude of similarity between two items on circular space, a
function can be built to convert from angular distance directly to
visual similarity using collected similarity judgments (Schurgin,
Wixted, & Brady, 2018; also see the Step 6: Distance Function
section). In the memory literature, recent evidence suggests that
participant responses from certain tasks (e.g., continuous retrieval
task; Wilken & Ma, 2004) may be better described by analyzing
responses using the magnitude of visual similarity rather than by
angular distance on circular space (Schurgin et al., 2018). Though
more research is needed to determine the measure that best de-
scribes memory in these tasks, we highlight that circular spaces
have been useful in reconceptualizing and refining our understand-
ing of the neural and behavioral underpinnings of memory (Cooper
& Ritchey, 2019; Ma et al., 2014; Nilakantan, Bridge, VanHaere-
nts, & Voss, 2018; Richter, Cooper, Bays, & Simons, 2016;
Schurgin et al., 2018; Yonelinas, 2013). In this domain, circular
spaces are often also used in conjunction with mixture models to
estimate both the detail of memories as well as the probability of
outlier responses that resemble random guesses (Ma et al., 2014;
Richter et al., 2016; Zhang & Luck, 2008, 2009).

Building a Circular Shape Space

Circular spaces allow for both the control over subjective vari-
ability as well as the ability to capture visual similarity along a
continuum. However, whereas experimenters have created and
validated these stimulus spaces for color (Cheung, 2016; McDer-
mott & Webster, 2012; Pointer, 1981; Robertson, 1977), a vali-
dated circular shape space does not yet exist, reflecting the lack of
resources available to experimenters wishing to select shape stim-
uli well-controlled on the basis of visual similarity. Important
previous attempts mathematically varied sets of sinusoidal curves
(e.g., using Fourier descriptors, Zhang & Luck, 2008, or radial
frequency patterns, Salmela, Mäkelä, & Saarinen, 2010), although
these circular spaces were never validated in terms of visual
similarity. Whereas mathematical measures such as radial fre-
quency patterns have been shown to capture some of the variance
in human similarity judgments for shape (Op de Beeck, Wage-
mans, & Vogels, 2001; Salmela, Henriksson, & Vanni, 2016),
other researchers suggest that these measures may not reflect an
organizing principle for shape representation more generally
(Schmidtmann & Fruend, 2019). Indeed, the organization of shape
in the visual system is an active and ongoing area of research (Bell,
Hancock, Kingdom, & Peirce, 2010; Cacciamani, Scalf, & Peter-
son, 2015; Firestone & Scholl, 2014; Gallant, Braun, & Van Essen,
1993; Haushofer, Livingstone, & Kanwisher, 2008; Hung, Carl-
son, & Connor, 2012; Pasupathy, El-Shamayleh, & Popovkina,
2018; Peirce, 2015; Salmela et al., 2016; Sanguinetti, Allen, &
Peterson, 2014).

In contrast to purely mathematical approaches, we used a novel
iterative image-processing method to create a circular shape space
explicitly validated using human-based similarity judgments.
Here, we describe and characterize the Validated Circular Shape
(VCS) space, the first perceptually uniform shape space whereby
angular distance is a proxy for visual similarity. A set of 360
shapes was mapped onto 360 degrees of a 2D circle. This space
was empirically validated to confirm that it was perceptually
uniform (i.e., shapes sampled from any degrees’ distance were
about as visually similar as any other shapes sampled from the
same degrees’ distance). We then precisely quantified the relation-
ship between angular distance and the magnitude of visual simi-
larity, demonstrating that shapes sampled closer in angular dis-
tance were more visually similar than shapes sampled further
away. VCS space is fully open source (available on the Open
Science Framework: https://osf.io/d9gyf/), and this resource is
provided to researchers interested in using shape stimuli exten-
sively validated and quantified on the basis of visual similarity.

Method

We implemented a novel iterative validation procedure in which
we (a) designed a set of initial shapes, dubbed “prototypes” (Figure
2A); (b) morphed between pairs of these prototypes to generate
360 unique shapes mapped onto each degree of a circle (Figure
2B); (c) collected similarity ratings (Figure 3A) and collated these
ratings across participants (Figure 3B) within a group similarity
matrix (Figure 3C); (d) used this group matrix to reconstruct shape
space with multidimensional scaling (MDS; Figure 3D); and (e)
identified problematic regions that were not circular (Figure 3E).
Problematic shapes were iteratively corrected until a circular shape
space could be created. For example, prototypes may have been
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discarded when the similarity between shapes was excessively
similar. In other cases, additional shapes may have been included
in regions where shapes were more dissimilar than expected.
Through the iterative correction of problematic shapes, MDS was
used to create a data-driven circular space without the need to
mathematically define the dimensions underlying the representa-
tion of visual form. Thus, VCS space was made to be perceptually
uniform (Figure 1B), in contrast to other approaches that did not
empirically collect similarity judgments (Salmela et al., 2010;
Zhang & Luck, 2008). In Step 6, for the final validation iteration
we quantified the exact relationship between angular distance and
visual similarity using a distance function, mapping a single nu-
merical similarity value onto each degree of VCS space. The
creation of this distance function was based on previous work on
circular color space (Schurgin et al., 2018).

We define the start of one validation “iteration” by the creation
of a set of prototype shapes. There were seven iterations in total.
For brevity, in the main text we report the methods and results of
the seventh iteration that ensured VCS space was circular, as well
as an overview of the experimental procedure. See the online

supplemental material for details on the earlier iterations, including
how prototype shapes were selected and the specific criterion for
defining problematic shapes.

Participant Recruitment

Sixty-seven participants (Mage � 21.58 years, SD � 2.76 years,
women � 48) were tested across all seven validation iterations,
recruited from the undergraduate psychology student pool at the
University of Toronto and from the community. Participants from
the undergraduate student pool were compensated with course
credit. Participants from the community were compensated $20
CAD for the final validation iteration and $10 CAD for the first
throught sixth iterations. The final validation iteration required up
to 90 min to complete, which included time for instructions, a
practice session, the actual experiment, and debriefing. Earlier
validation iterations contained fewer stimuli to be rated and re-
quired under an hour to complete. We recruited new individuals
for each validation iteration. This study was approved by the
University of Toronto Ethics Board: Protocol number 23778.

It was not possible to determine an a priori sample size because
the quantitative measures of circularity were descriptive rather
than inferential (Figure 3E). Instead, we developed VCS space
over many iterations, whereby the stimulus space was successively
replicated seven times. For example, in the sixth validation itera-
tion (see Validation 6 in the online supplemental material), a single
problematic region on the reconstructed shape space was identi-
fied. Fixing that single problematic region in the final validation
iteration produced a circular shape space. The successive replica-
tion of VCS space over each iteration combined with a novel
procedure involving the alignment of shape space across two
independent groups (described in the Validation Procedure sec-
tion) was intended to maximize the generalizability of our find-
ings. Overall, the final validation iteration tested a sample size of
21 individuals (Mage � 22.52 years, SD � 4.14 years, women �
13).

Apparatus

The validation experiment was created in MATLAB using
Psychtoolbox-3 (Kleiner, Brainard, & Pelli, 2007). All stimuli
were displayed on the monitor of a Latitude 3460 Dell laptop with
a resolution of 1,920 � 1,080 and a frame refresh rate of 60 Hz.
The monitor was 12.18 in � 6.85 in wide. The distance from the
monitor to the participant was approximately 50 cm. All shape
stimuli were presented on top of a uniform white background,
subtending approximately 3.44 degrees of visual angle. Partici-
pants responded to on-screen instructions using the keyboard keys.

Validation Procedure

Step 1: Designing prototype shapes. In the first validation
iteration (see the online supplemental material), a set of 2D shape
line drawings were created as prototypes. These first prototype
shapes were designed to be visually distinct while controlling for
the approximate size of each shape. As we were specifically
interested in capturing visual similarity along a 2D circle, we did
not explicitly control for any other lower or higher-order stimulus
properties, although these properties may have been implicitly

Figure 2. (A) The prototype shapes used to generate the stimulus space
separated by 30 degrees of angular distance (positions denoted by triangles
in Panel B). (B) Simplified Validated Circular Shape space with stimuli
mapped to every 12 degrees of angular distance. The full circular stimulus
space contained 360 stimuli, with a unique morphed shape mapped to each
degree on the wheel. Morphs were obtained by blending the prototype
shapes, the positions of which are denoted by black triangles. Closed blue
denote shapes rated in Group 1, whereas open red denote shapes rated in
Group 2. Three shapes were shared in Group 1 and 2, representing the
anchors used to align the shape space reconstructions from each group
(described in the main text under Validation Procedure). See the online
article for the color version of this figure.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

952 LI, LIANG, LEE, AND BARENSE

http://dx.doi.org/10.1037/xge0000693.supp
http://dx.doi.org/10.1037/xge0000693.supp
http://dx.doi.org/10.1037/xge0000693.supp
http://dx.doi.org/10.1037/xge0000693.supp


controlled through the visual similarity judgments. See the Dis-
cussion section for the implications of the initial selection of these
prototypes on the final shape space. Prototype shapes were then
incrementally corrected across each validation iteration until no
problematic shapes were present. In the final validation iteration,
12 prototype shapes (Figure 2A) were created by redesigning the
problematic region from the previous validation iteration (see
Validation 6 in the online supplemental material). Problematic
shapes were manually redesigned using Photoshop, taking care to
keep the change in similarity approximately uniform across all
prototypes.

Step 2: Morphing. Neighboring pairs of prototype shapes
were then morphed using SqirlzMorph (Xiberpix, 2008). If visual

artifacts were observed as a result of morphing, Photoshop was
used to manually smooth the artifacts. This morphing procedure
generated a circular stimulus space of 360 unique shapes (Figure
2B) from a set of 12 initial prototypes (Figure 2A).

Fifteen shapes spaced equidistantly—every 24 degrees—on this
stimulus space were selected for validation. Participants were
randomly separated either into Group 1 (n � 11) or Group 2 (n �
10); each group rated six unique shapes in addition to three
“anchor shapes” that were identical to both groups (see Figure 2B,
shapes denoted by closed blue and open red). Critically, the stimuli
selected for validation were different from the prototype shapes
used to build the space, with the exception of the anchor shapes
which were prototypes. These three anchor shapes were specifi-

Figure 3. Similarity validation procedure using simulated data for illustrative purposes. (A) Participants were
shown three shapes sampled from the set every trial, and judged which of the bottom shapes were more similar
to the top one. After a response, participants rated the similarity between the top shape and bottom shapes. (B)
The similarity judgments were averaged to create a similarity matrix for each participant. (C) All participant
similarity matrices were then averaged to produce a similarity matrix for each group, whereby each cell
represents the average similarity between two shapes sampled from the stimulus space. (D) Multidimensional
scaling was used to reconstruct the subjective shape space from each group similarity matrix. (E) Last, the Group
1 and Group 2 shape spaces were aligned together to produce a single shape space. A quantitative circularity
score characterized the extent to which the aligned subjective shape space was circular. See the online article for
the color version of this figure.
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cally selected to be maximally distinct from each other, estimated
from the results of the previous validation iteration. We aligned the
reconstructed spaces from the two groups by the anchor shapes
(described in Step 4) based on the similarity ratings (described in
Step 3). Importantly, not all validation iterations required the
selection of anchor shapes, as not all validation iterations required
alignment (see the online supplemental material).

Step 3: Similarity ratings. Participants were presented de-
tailed instructions and completed a short practice version (five
trials) of the task prior to the procedure. The nine shapes selected
for each group (denoted by closed blue and open red in Figure 2B)
formed the stimuli to be rated for that group. Every trial, one shape
was displayed near the top of the screen and two shapes were
displayed near the bottom left and bottom right of the screen
(Figure 3A); 800 ms later, participants were then cued with text to
select the shape on the bottom left (“A” key) or the bottom right
(“L” key) that was most visually similar to the shape positioned at
the top of the screen. This initial judgment phase in which triads
were presented (Figure 3A) allowed observers to calibrate to the
shapes being rated on a given trial. One thousand ms after a
response, the shape on the top and one of the two bottom shapes
were randomly paired together; 800 ms later, participants rated the
similarity of the paired shapes with 0 being “no similarity” and 5
being “identical.” One thousand ms after a response, the top shape
was displayed with the other bottom shape that had not been rated;
800 ms later, participants again rated the similarity of the paired
shapes with 0 being “no similarity” and 5 being “identical.” After
this last response, a screen appeared with the number of trials
completed, and participants pressed the space key to begin the next
trial. Importantly, short delays were included between the presen-
tation of a shape and the presentation of the rating scale, so that
participants studied the presented shapes rather than responding in
a speeded way. We also emphasized to participants that they
should use the entire rating scale during the experiment.

Over the course of the experiment, shapes were randomly sam-
pled during the first triad of every trial such that relative to each
individual shape in the set, all possible combinations of shape pairs
were sampled. More specifically, participants made pairwise rat-
ings between each shape relative to each other shape 14 times (e.g.,
Shape 1 was rated relative to Shape 2 in 14 different instances; of
these 14 instances, Shape 1 was presented at the top of the initial
triad seven times and at the bottom left or right of the initial triad
seven times). Each of the nine shapes was also rated on two trials
relative to itself (e.g., Shape 1 with Shape 1). This created the
diagonal in the similarity matrices (Figure 3B and 3C). These rules
generated a list of three shapes every trial, and the presentation
order of these trials were randomized. For these reasons, the final
validation iteration required 270 trials. Earlier validation iterations
required less trials (see the online supplemental material).

All pairwise ratings involving the same two shapes were aver-
aged (e.g., the similarity values between Shape 1 and Shape 2 were
averaged across all instances shown in the initial triad). These
mean scores take into account the overall similarity of the set and
were represented within a similarity matrix for each participant
(Figure 3B). These participant similarity matrices were then aver-
aged across participants to produce a single similarity matrix for
each group (Figure 3C). All participant and group matrices were
symmetrical due to the averaging procedure. This within-subject
procedure was expected to increase power, reduce error, and allow

MDS to recreate subjective space with greater precision. Indeed,
the high number of trials (n � 14) for each pairwise rating between
the same two shapes ensured high reliability of the visual similar-
ity estimate between shapes on the stimulus space.

Step 4: Reconstructing shape space. From the averaged sim-
ilarity matrix in each group (Figure 3C), shape space was recon-
structed with MDS (Figure 3D) using the mdscale function in
MATLAB. The anchor shapes (i.e., shapes that were the same in
each group) were then used to align the reconstructed shape space
from each group together (Figure 3E). Here, we used two separate
alignment functions: Procrustes transformation (Figure 4A) and
affine transformation (Figure 4B). Procrustes transformation pre-
serves the relational structure of the space in both groups, which
may result in imperfect alignment. In contrast, affine transforma-
tion includes an additional “skew” step and can perfectly align the
two group shape spaces by the three anchor points but may distort
the relational structure of one of the spaces. As the affine trans-
formation may alter the relational structure of one group space
(Figure 4B), we visually compared the solutions obtained from the
Procrustes and the affine transformations. Furthermore, only the
affine aligned shape space could be used to quantitatively deter-
mine whether the final validation iteration was circular, as the
Procrustes transformation does not perfectly align the group spaces
(see Step 5: “Assessing Circularity” section).

We could not collect ratings for all 360 shapes from VCS space
due to the exorbitant number of trials required for pairwise simi-
larity judgments (64,620 trials just to collect a single rating for all
pairwise combinations of 360 shapes). Researchers have previ-
ously decreased the number of trials needed by using a spatial
similarity method (Kriegeskorte & Mur, 2012), in which partici-
pants “drag-and-drop” stimuli to locations on a computer screen.
In this method, observers use the spatial proximity of items as an
index of visual similarity. However, because our goal was to
develop a particular spatial configuration (i.e., a circle), we did not
want to bias participants into using a spatial similarity method
which may unintentionally lead to circular configurations (Ver-
heyen, Voorspoels, Vanpaemel, & Storms, 2016). Our novel pro-
cedure in which two independent groups each rated six unique
shapes � three anchor shapes was instead used to infer the overall
relational structure of VCS space. This method provides the most
powerful demonstration that the space was indeed circular, be-
cause a circular space could have only been reconstructed across
groups if visual similarity changed uniformly and incrementally
across the entire stimulus space.

Statistical Analysis

Step 5: Assessing circularity. It is standard practice for ex-
perimenters to qualitatively interpret reconstructed space, as MDS
is a descriptive analysis (for examples of previous applications of
MDS in the cognitive sciences, see Hout, Goldinger et al., 2013;
Hout, Papesh, & Goldinger, 2013; Hout et al., 2016; Shepard,
1980). In addition to this qualitative assessment, we added a novel
quantitative approach to assess whether or not a reconstructed
shape space was circular. Circularity was defined using a simple
mathematical ratio that captures the relationship between the area
and perimeter of a spatial configuration. More specifically, the
circle is the spatial configuration with the largest area relative to
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perimeter in the plane (see isoperimetric inequality; Osserman,
1978):

Circularity (C) � 4� � [Area]
[Perimeter]2

To calculate C, borders were drawn between the projected
coordinates of each shape in the aligned shape space (Figure 3E),
following the relational structure of the original stimulus space
(Figure 2B). For example, if the reconstructed position of Shape 1
was at 1 degree on the stimulus space, Shape 2 at 25 degrees, and
Shape 3 at 49 degrees, then a border was drawn from Shape 1 to
Shape 2 to Shape 3 (and so forth, with the final shape connected
back to Shape 1). Area and perimeter were then calculated to
determine a value of C (Figure 3E). A space that is a perfect circle
will have a C value equal to 1.0. As a space is increasingly less
circular, C will approach 0.0. To complement this quantitative
circularity score, we qualitatively assessed whether the positioning
of the vertices within the reconstructed shape space approximately
matched the vertices of the original stimulus space. For every
validation iteration, a reconstructed shape space was defined quan-
titatively as sufficiently circular when C exceeded 0.90 and qual-
itatively as sufficiently circular when the relative positions of the
vertices approximately matched the original shape space. C � 0.90
was selected as the threshold for circularity as this value indicates
a geometry that is qualitatively close to a perfect circle, confirmed
through simulations (commented code available on the Open Sci-
ence Framework: https://osf.io/d9gyf/). A detailed description of
these simulations and pictorial examples are available in Circu-
larity Simulations in the online supplemental material. Also see
Figure 5 for examples of how the measure of C tracked circularity
from the first validation iteration to the final validation iteration.

C was calculated specifically for the affine aligned shape space
(Figure 4B). We used the affine aligned shape space to determine
C rather than the Procrustes aligned shape space, because Pro-
crustes transform does not always perfectly align the two group
shape spaces together (Figure 4A). However, because the affine
alignment procedure may distort the relational structure of one
group shape space (Figure 4B), we conducted both Procrustes and
affine transformations and visually compared the solutions. Per-
mutation testing was conducted to determine whether the C value
for the affine aligned shape space could have been obtained by
chance. The shape labels of each participant matrix were shuffled
to form a scrambled version of Figure 3B. These null participant
matrices were averaged together to produce a null group similarity
matrix (a scrambled version of Figure 3C). Null MDS coordinates
were then projected from each null group similarity matrix,
forming a null reconstructed space for each group. These null
shape spaces were aligned together to produce a null affine
aligned shape space. A null C score then determined the circu-
larity of this null affine aligned shape space. This process was
repeated 10,000 times to generate a null distribution of C
scores. Statistical significance was defined as probability p �
0.05 for the observed C score relative to the null distribution of
C scores. Critically, the observed C value derived from the
reconstructed subjective space gives information regarding cir-
cularity, whereas the p value obtained from permutation testing
gives information regarding whether the subjective space could
be formed by chance. A subjective shape could be noncircular
(e.g., C � 0.75, see Figure 5), yet could be statistically signif-
icant (e.g., p � 0.05) because participants may be homogenous
in how they perceived a stimulus space.

Figure 4. Visualization of the alignment procedure, whereby the transformation order of steps is simplified and
the expected positional differences between spaces is exaggerated for illustrative purposes. First, multidimen-
sional scaling was used to reconstruct a separate shape space from each group similarity matrix. Separate
alignment functions were then applied to the two shape spaces. Linear transformations are first determined for
the anchor shapes, shown as a triangle, then applied to the rest of the space. (A) Procrustes transformation
includes scaling, rotation, and translation, which preserves the relational structure of both spaces but can lead to
imperfect alignment. (B) Affine transformation includes scaling, rotation, translation, and skew, which can
distort the relational structure of one of the group shape spaces but will perfectly align both groups together. See
the online article for the color version of this figure.
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We also examined the uniformity of individual shape spaces by
calculating a homogeneity score representing the overall consis-
tency between all the similarity judgments made for a given
validation iteration. To calculate this score, each participant matrix
(Figure 3B) was correlated with every other participant matrix. As
participant matrices were symmetrical (see Step 3: Similarity Rat-
ings section), only the upper triangle of each participant matrix
excluding the diagonal was correlated to each other. This created
a new matrix with elements containing the correlation between
each participant to every other participant. We first normalized
these correlations by transforming to Fisher’s z (Corey, Dunlap, &
Burke, 1998). These z values were averaged then transformed back
into a correlation value to produce a single score representing the
degree to which individuals homogeneously perceived a shape
space.

Permutation testing was conducted to compute the likelihood of
observing the homogeneity score by chance. The labels of each
participant matrix (Figure 3B) were shuffled and the upper triangle
of these matrices were correlated to each other, forming a null
correlation matrix. We then averaged the normalized correlations
in the upper triangle of the null between-participants correlation
matrix to produce a null homogeneity score. This procedure was
repeated 10,000 times to produce a null distribution of homoge-

neity scores. Statistical significance was defined as probability p �
0.05 for the observed homogeneity score relative to the null
distribution of homogeneity scores.

Step 6: Distance function. Similarity can be considered in
two ways for a circular space (Figure 1B). First, an ideal circular
space is perceptually uniform, meaning that items sampled from
any distance are about as similar as any other items sampled from
that same distance. Second, the magnitude of similarity can be
approximated by angular distance, meaning that items closer in
angular distance are more similar than items further in angular
distance. The circularity value (Figure 3E) gives information re-
garding the degree to which the shape space is perceptually uni-
form. However, the circularity value does not give information
regarding the magnitude of the numerical change in similarity
from one shape to the next.

To determine if angular distance is an approximation of visual
similarity, we combined a quantitative and qualitative approach.
Quantitatively, a function was used to predict the collected simi-
larity ratings using the angular distance of shapes positioned on the
stimulus space, akin to a regression analysis predicting visual
similarity from angular distance. This distance function mathemat-
ically describes the relationship between angular distance and
visual similarity on VCS space (see Results for a step-by-step

Figure 5. C was calculated for each validation iteration (see the online supplemental material for detailed
results). All validation iterations were statistically significant using permutation testing. Numbers represent the
position of each shape from the associated stimulus space.
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description). In this way, a numerical similarity value was obtained
for each possible pairing of the 360 shapes in VCS space, even
though ratings were only collected for 15 shapes (Figure 2B).
Qualitatively, we examined the change in visual similarity with
respect to angular distance in each group similarity matrix (Figure
3C). If angular distance approximated visual similarity, then
shapes closer in angular distance should be associated with a
higher similarity rating than shapes further in angular distance.

Summary of analyses. We computed the following set of
measurements: (a) C, representing the circularity of the affine
aligned shape space; (b) the homogeneity score, representing the
mean correlation between all participant similarity judgments, and
in the final validation iteration; (c) a distance function quantified
the relationship between angular distance and visual similarity.

Two types of similarity on VCS space were examined (Figure
1B): whether the space was perceptually uniform and whether
angular distance approximated visual similarity. First, a recon-
structed shape space was defined as sufficiently circular (i.e.,
perceptually uniform) when C exceeded 0.90 and when qualita-
tively, the relative positions of all vertices of the reconstructed
shape space tended to match the original stimulus space. Second,
if angular distance approximated visual similarity, then shapes
closer in angular distance should be more similar than shapes
further away.

Results

Validation Iterations 1–6

Circularity. Seven validation iterations were required to ex-
ceed a C score of 0.90 (Figure 6; the online supplemental mate-
rial). We found that the first validation iteration was not circular
(C � 0.69), suggesting that stimulus spaces arranged by experi-
menters without explicitly collecting similarity judgments may not
match visual similarity. All C scores (Figure 6A) were signifi-

cantly different from what would be expected by chance alone (at
or below p � 0.01 using permutation testing; see Step 5: “Assess-
ing Circularity” section for a description of the analysis). This
suggests that the reconstructed shape space within each iteration
could not have been obtained by chance, but rather reflects the
degree to which the stimulus space is perceptually uniform.

Homogeneity score. The mean correlation between partici-
pant similarity judgments was consistently very high across all
validation iterations (all homogeneity scores were statistically sig-
nificant using permutation testing at p � 0.0001; Figure 6B).
Overall, this result suggests that individuals were very similar to
each other in their representation of the stimulus space across
validation iterations, even when the stimulus space in a specific
validation iteration was not circular.

Final Validation Iteration

Circularity. In the seventh and final validation iteration, C of
the affine aligned shape space was 0.95 (p � 0.0001 using per-
mutation testing), suggesting that it was circular (Figure 7). Qual-
itatively, the positions of shapes on both the Procrustes (Figure 7B)
and affine aligned (Figure 7C) shape space approximately matched
the positions of shapes sampled from VCS space. These results
confirmed that VCS space was circular, as the shapes to be rated
in each group were sampled from arbitrary positions on the orig-
inal stimulus space. For detailed group results, see Validation 7 in
the online supplemental material.

Complimenting the alignment procedure, when the Group 2
similarity matrix was overlaid with the Group 1 similarity matrix
(Figure 8), a striking trend could be observed. Angular distance
approximated (though was not identical to) visual similarity: visual
similarity tended to decrease as angular distance increased. For
example, Shape 1 and Shape 2 were separated by 24 degrees on
VCS space and were associated with a similarity value of 3.8 (see
the second element of the first row on Figure 8). Increasing the

Figure 6. Overall results across validation iterations. (A) C by validation iteration, representing the degree to
which each stimulus space was perceptually uniform. Higher values reflect a space that is closer to a perfect
circle, meaning a space that is more perceptually uniform. (B) Homogeneity scores by validation iteration,
reflecting the mean correlation between participant similarity judgments. The homogeneity score determined for
each group was averaged to produce a single value for a given validation iteration in the plot above. These results
suggest that even if a stimulus space in a validation iteration was not circular, participants were homogeneous
in how they perceived shape similarity.
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angular distance between shapes by another 24 degrees and com-
paring Shapes 1 and 3 decreased the observed similarity rating to
a value of 3 (see the third element of the first row on Figure 8).
Importantly, this matrix was created from combining the similarity
ratings across groups with no adjustment whatsoever. That is, we
overlaid the similarity matrices from each group (see Validation 7
in the online supplemental material) into a single matrix without
interpolation across groups, further confirming that the change in
visual similarity across VCS space was uniform.

Homogeneity score. The homogeneity score was very high in
both groups (Group 1 � 0.87, Group 2 � 0.86), suggesting that
participant similarity judgments were highly correlated to each

other (Figure 6B). The observed correlation across participants
could not be based on chance alone, as both homogeneity scores
were statistically significant at p � 0.0001 using permutation
testing.

Distance function. We quantified the exact relationship be-
tween angular distance and visual similarity on VCS space, in-
spired by previous work on a distance function for circular color
space (Schurgin et al., 2018). Using the collected similarity judg-
ments across both groups (Figure 8), the visual similarity of each
shape relative to the set was plotted by degrees on VCS space. This
is shown on Figure 9A, where every 24 degrees reflects the
similarity value of one shape relative to every other shape in the

Figure 7. Results of the final validation iteration. Numbers represent the sequential position of the rated shapes
sampled from the Validated Circular Shape (VCS) space (e.g., each rated shape was 24 degrees apart, so Shape
1 would be at 1 degree, Shape 2 at 25 degrees, Shape 3 at 49 degrees, and so on). (A) Simplified VCS space
labeled with the shapes rated during the final validation iteration. (B) Procrustes alignment of Group 1 (closed
blue) and Group 2 (open red). (C) Affine alignment between Group 1 and 2. Both alignment functions were
highly similar and both resulted in circular reconstructions (D). The final shape space reconstructed by affine
transformation on the multidimensional scaling solutions from Group 1 and 2. See the online article for the color
version of this figure.T
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set. For example, the similarity between Shape 1 rated with itself
is plotted at 0 degrees, Shape 1 rated with Shape 2 is plotted at 24
degrees, Shape 1 rated with Shape 3 is plotted at 48 degrees, and
so forth. Likewise, the similarity between Shape 2 rated with itself
is plotted at 0 degrees, Shape 2 rated with Shape 3 is plotted at 24
degrees, Shape 2 rated with Shape 4 is plotted at 48 degrees, and
so forth until all similarity values from Figure 8 are plotted on
Figure 9A.

These collected similarity ratings were averaged and then re-
plotted by angular distance (Figure 9B). More specifically, the
angular distance between Shape 1 relative to Shape 2 as well as
Shape 1 relative to Shape 15 is 24 degrees’ distance (because
shapes are mapped along 360 degrees of a circle). All instances
between pairs of shapes with equivalent angular distances were
averaged to obtain a single similarity value at every 24 degrees’
distance. To predict a similarity value for each degree on VCS
space given our observed similarity ratings, a nonlinear exponen-
tial function successfully fit the relationship between visual simi-
larity and angular distance (R2 � 0.998; Figure 9B). This nonlinear
function was normalized to create the line in Figure 9C. Normal-
ization converted the y-axis of this function from our similarity
rating scale (0–5) to a percentage scale (0–100%). Taken together,
this distance function predicted a numerical similarity value—a

percentage match in visual similarity—between any two shapes
sampled from VCS space. Angular distance was an approximation
of visual similarity, as the visual similarity between two shapes
incrementally decreased as angular distance increased (Figure 9C).

Discussion

We provide and characterize the VCS space, the first perceptu-
ally uniform shape space whereby the angular distance between
360 shapes mapped on a 2D circle is a proxy for visual similarity
(available on the Open Science Framework: https://osf.io/d9gyf/).
To achieve this property, VCS space was developed across a series
of seven validation iterations. In the final validation iteration,
MDS reconstructions from the similarity ratings of two separate
groups were aligned to recreate the original circular stimulus
space. A quantitative measure of circularity then precisely cap-
tured the representational geometry of the reconstructed stimulus
space, to our best knowledge the first application of isoperimetric
inequality in the domain of similarity data. VCS space is compa-
rable to a “color wheel” built from CIELAB color space (Figure 1),
whereby the distances between stimuli are known to approximate
the way in which human observers perceive color similarity (Mc-
Dermott & Webster, 2012; Pointer, 1981; Robertson, 1977).

Experimenters using VCS space may consider similarity in two
ways. VCS space is perceptually uniform, meaning that shapes
separated by any distance are about as similar as any other shapes
separated by the same distance. By sampling stimuli from equi-
distant angular positions on VCS space, the variability in similarity
from one shape to the next is consistent across the set. In this way,
the experimenter could use VCS space alone or in conjunction
with color space so that the similarity of multiple features within
an object can be empirically manipulated (Figure 10A). The sec-
ond way to consider similarity on VCS space is with respect to
magnitude, meaning that shapes closer in angular distance tend to
be more similar than shapes further in angular distance. Though
our distance function revealed that angular distance very closely
tracked visual similarity, angular distance was not perfectly anal-
ogous to the magnitude of visual similarity between items (Figure
8 and 9B). If the magnitude of similarity must be quantified with
numerical precision, the researcher may consider using our dis-
tance function (also available on the Open Science Framework:
https://osf.io/d9gyf/; see Figure 9C). For example, in Figure 10B,
each shape was sampled using the distance function so that the
magnitude of visual similarity changed incrementally by 20%.
Depending on the particular research question, experimenters us-
ing VCS space may need to decide which of these properties
should be emphasized for stimulus selection. For example, if the
experimenter wishes to equate the variation in visual similarity,
then sampling stimuli on the basis of angular distance will be
sufficient (i.e., the perceptually uniform property). However, if the
experimenter desires an exact numerical similarity value between
stimuli (i.e., the magnitude property), then experimenters may
wish to use our distance function to sample shapes (Figure 9 and
10). Importantly, the distinction between the perceptually uniform
property and the magnitude of visual similarity on circular space
has been at the center of an emerging debate in the memory
literature (Schurgin et al., 2018). This debate focuses on the
question of whether memory errors on certain tasks (e.g., contin-
uous retrieval task) using circular space can be better described in

Figure 8. The similarity matrix for Group 2 was simply combined with
the similarity matrix for Group 1. Elements with a value in both Group 1
and Group 2 were averaged together. Blank elements refer to pairs of
shapes that did not have a similarity rating as they were in distinct groups.
Each element refers to the averaged similarity rating across all participants,
bounded from 0 (no similarity) to 5 (identical). The x- and y-axis include
the rated shapes, the group, and the position on the Validated Circular
Shape space (Figure 2b) from which the shape was sampled. Here, we see
a striking trend in similarity across groups, whereby shapes closer in
angular distance were rated more similarly compared to shapes further in
angular distance. See the online article for the color version of this figure.
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terms of angular distance which approximates the magnitude of
similarity (Ma et al., 2014), or whether such errors are better
described by the magnitude of similarity between a studied and
reconstructed memory (see Figure 1B; Schurgin et al., 2018). For
these reasons, future experiments using VCS space can examine
the influence of incorporating the magnitude of similarity on
memory errors in a continuous retrieval task (e.g., by using our
distance function, Figure 9; Ma et al., 2014; Schurgin et al., 2018;
Zhang & Luck, 2008).

VCS space is very precisely characterized in terms of the change
in visual similarity along a 2D circle, comparable to the way
similarity changes around circular color space. However, there are
also several differences between our circular shape space com-
pared to color space. Perceptually uniform color spaces span the
complete range of trichromatic color vision (McDermott & Web-
ster, 2012), whereas our shape space was necessarily constrained
in scope due to limited number of prototype shapes used to
develop VCS space. From iteration to iteration we prioritized
improving how visual similarity was captured along a circle (Fig-
ure 5), rather than controlling for differences in lower-level shape
properties such as curvature (Bell et al., 2010; Loffler, 2008;

Wilson & Wilkinson, 2015), complexity (Brincat & Connor,
2004), or symmetry (Apthorp & Bell, 2015), or higher-level shape
properties such as prototypicality (Feldman, 2000), likability (Bar
& Neta, 2006), or processing fluency (Reber, Schwarz, & Winkiel-
man, 2004). For these reasons, each exact dimension underlying
the circular nature of VCS space is not known, nor do we know
whether such dimensions on VCS space are integral or separable
(Drucker & Aguirre, 2009; Drucker, Kerr, & Aguirre, 2009; Gar-
ner & Felfoldy, 1970; Grau & Kemler Nelson, 1988; Kemler
Nelson, 1993; Offenbach, 1990). Depending on the specific re-
search question, experimenters may need to evaluate how VCS
space differs across multiple dimensions to either account for these
dimensions or determine what aspects of each dimension may be
critical drivers for the phenomenon VCS space is used to research.

Nevertheless, the way in which visual similarity is captured
along VCS space (Figure 1B and Figure 10) can be usefully
adapted to examine theoretical questions in a variety of domains.
For example, we used VCS space to replicate a memory effect
previously demonstrated using circular color space (Sun, Fidalgo,
et al., 2017). VCS space was used to quantify the visual similarity
of distracting information (see Experiment 2 in Li, Liang, Lee, &

Figure 9. Validated Circular Shape (VCS) space distance function. (A) Relative to each rated shape, all
similarity judgments from Figure 8 were replotted as a function of degrees on VCS space. Error bars reflect the
95% confidence interval for the mean similarity rating as a function of degrees on VCS space. (B) Average visual
similarity as a function of angular distance. Angular distance approximated visual similarity, as a nonlinear
exponential function (R2 � 0.998) well predicted the relationship between angular distance and the observed
similarity ratings. (C) The nonlinear exponential function was normalized to directly compare between shapes
along a percentage scale, bounded by 100%, representing a perfect match in similarity, and 0%, representing
maximal dissimilarity with respect to the shape space.
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Barense, 2019; Li, Fidalgo, Liang, Lee, & Barense, 2018). Mem-
ory for target shapes were then tested after participants viewed
either dissimilar or similar interference. We found robust interfer-
ence effects that were consistent for both shape and color (Sun,
Fidalgo, et al., 2017). Dissimilar interference disrupted both fine-
and coarse-grained information, rendering the memory inaccessi-
ble. In contrast, similar interference disrupted fine-grained but
increased the reliance on coarse-grained information, rendering the
memory blurred. These results provide converging evidence for a
set of generalizable rules regarding how the nature of interference
influences memory, and also suggests that visual similarity on
VCS space influences memory in a manner comparable to circular
color space.

The neural mechanisms and principles by which shape is pro-
cessed by the visual system is an currently active area of research
(Bell et al., 2010; Cacciamani et al., 2015; Haushofer et al., 2008;
Pasupathy et al., 2018; Peirce, 2015; Salmela et al., 2016; Sangui-
netti et al., 2014). Here, the successful creation of VCS space
directly implies the existence of a fundamental shape space coded
by the visual system. This conclusion is additionally supported by
the high homogeneity scores across each validation iteration (Fig-
ure 6C), suggesting that participants were highly correlated in how
they perceived a stimulus space, even when a given stimulus space
was not circular. Researchers have previously proposed that neu-
rons sensitive to curvature may be important for processing visual
form, with resultant models based on curvature detecting units
(Bell et al., 2010; Gallant et al., 1993; Gallant, Connor, Rakshit,
Lewis, & Van Essen, 1996; Loffler, 2008; Pasupathy, 2006; Pa-
supathy & Connor, 2002; Peterson & Gibson, 1994; Salmela et al.,
2016; Schmidtmann & Fruend, 2019; Wilson & Wilkinson, 2015).
One future direction of investigation may be to determine whether

existing shape models can describe the circular organization of
VCS space, because a successful model of shape representation
should be able to explain why VCS space is circular at the level of
the set (i.e., the perceptually uniform property) and why angular
distance approximates the magnitude of visual similarity. For these
reasons, understanding and characterizing the dimensions of VCS
space may offer novel insight into how humans represent shape.

Another direction of investigation may involve neuroimaging to
examine whether the circular organization of VCS space is re-
flected in patterns of neural activity. Akin to how color represen-
tations in V4 and VO1 are organized in a way similar to subjective
color space (Brouwer & Heeger, 2009), and object representations
in the inferior temporal cortex are organized in a way similar to
subjective semantic space (Charest et al., 2014), neural represen-
tation of visual form may follow a similar organization to subjec-
tive shape space. One potential candidate is LOC, known to be
important for shape processing (Drucker & Aguirre, 2009; Drucker
et al., 2009; Grill-Spector, Kourtzi, & Kanwisher, 2001; Haushofer
et al., 2008; Kourtzi & Kanwisher, 2000; Op de Beeck, Torfs, &
Wagemans, 2008). In particular, the well-characterized nature of
VCS space can be usefully combined with multivariate analyses
which necessitate quantitative measures of similarity (e.g., see
representational similarity analysis, Kriegeskorte et al., 2008; also
see inverted encoding models, Brouwer & Heeger, 2009; Gardner
& Liu, 2019; Kok & Turk-Browne, 2018; Sprague et al., 2018).
Presently, it is common practice to select or create stimuli for
behavioral and neuroimaging experiments based on experimenter
intuition (e.g., word lists, scenes, faces, objects, complex sound
stimuli), such that these stimuli can vary on many different un-
known integral or separable dimensions. We believe that VCS
space is an improvement on this practice, as visual similarity was

Figure 10. (A) Example of how the perceptually uniform property of Validated Circular Shape (VCS) space
can be used in an experiment. Colors sampled from equidistant positions on CIELAB space (on a circle centered
around L � 70, a � 20, b � 38, with radius � 60 units) and shapes sampled from equidistant positions on VCS
space can be used to create objects with multiple features that are well-controlled in subjective variability. (B)
The magnitude of visual similarity is approximated by angular distance on VCS space. To quantify the
magnitude of visual similarity with numerical precision, we used our distance function to sample shapes. Each
shape shown above differs by a 20% match in visual similarity relative to the shape displayed in the box. See
the online article for the color version of this figure.
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precisely quantified along a circular continuum (i.e., the percep-
tually uniform property and the magnitude property; Figure 1B).
For these reasons, VCS space may be a useful stimulus space for
studying neural representations in future work.

Qualitatively, one organizing dimension underlying VCS space
is likely the curvature along the contour of each shape (Gallant et
al., 1993; Pasupathy et al., 2018; Pasupathy & Connor, 2002;
Ponce, Hartmann, & Livingstone, 2017; Yue, Pourladian, Tootell,
& Ungerleider, 2014). Observation of the horizontal axis on VCS
space seems to suggest a division organized by the degree to which
a shape possesses sharp as opposed to curved edges (Figure 2B).
Supporting this observation, previous studies of shape-sensitive
cortex in nonhuman primates have found neurons with selective
tuning to line curvature irrespective of size or orientation (El-
Shamayleh & Pasupathy, 2016; Nandy, Sharpee, Reynolds, &
Mitchell, 2013; Pasupathy, 2006; Yue et al., 2014). Interestingly,
a curved-sharp shape dimension also seems to map onto cross-
modal correspondences between shape and other sensory modali-
ties (Velasco, Woods, Petit, Cheok, & Spence, 2016). There is a
ubiquitous tendency for curved shapes to be rated as possessing
softer, sweeter, and more pleasant characteristics compared to
sharply angled shapes (Hanson-Vaux, Crisinel, & Spence, 2013;
Spence & Ngo, 2012; Turoman, Velasco, Chen, Huang, & Spence,
2018). For example, whereas curved shapes are systematically
rated to taste like vanilla and mint, sharply angled shapes are
systematically rated to taste like pepper and cheese (Seo et al.,
2010). The crossmodal correspondence between curved and
sharply angled shapes to the other senses may perhaps reflect a
neural division of curvature in the cortex and is an intriguing line
of future investigation. That is, clusters of curvature sensitive
neurons may have differential connectivity to other sensory corti-
ces, a conjecture supported by evidence of discrete curvature-
processing sites in the visual cortex (Yue et al., 2014). However,
further experiments are needed to empirically determine if the
dimensions underlying the circular nature of VCS space are ap-
plicable to the study of crossmodal correspondences.

Importantly, as it was not possible to collect pairwise similarity
judgments for all 360 shapes on VCS space (64,620 trials just to
collect a single rating for all pairwise combinations of 360 shapes),
we developed a novel procedure involving shape space alignment
between two independent groups of participants (Figure 3E and 4).
The only way that alignment between two independent groups
could reconstruct the overall shape space is if visual shape simi-
larity changed incrementally and uniformly on VCS space across
observers. Indeed, successful alignment confirmed the creation of
a circular shape space (Figure 7), overcoming both the limited
sample size and the limited number of shapes rated from VCS
space in each group (six unique shapes � three anchors; see Figure
7 and 8). Future experiments can increase the number of shapes
sampled from VCS space for validation and explore the potential
strengths and weaknesses of our validation approach. Neverthe-
less, this novel methodology may be useful for researchers inter-
ested in developing and characterizing new stimulus spaces vali-
dated on properties other than visual similarity and for features
beyond shape. In our method, MDS visualized the representational
geometry of the stimulus space, and then this space was iteratively
adjusted using the information observed from the collected simi-
larity judgments. Throughout this process, a quantitative score
based on isoperimetric inequality (Fusco, 2015; Osserman, 1978)

determined the extent to which each iteration of VCS space was
circular (see Step 5: “Assessing Circularity” section). Critically,
formulas based on isoperimetric inequalities can be generated for
many other types of spatial configurations. For example, if an
experimenter wished to create a spherical 3D stimulus space, a
quantitative score can capture the ratio between volume and sur-
face area (i.e., the sphere is the configuration with the largest
volume relative to surface area in three dimensions; Kesavan,
2002; Osserman, 1978). Moreover, isoperimetric inequalities exist
for polygons in two dimensions such as squares and triangles (i.e.,
the equilateral triangle is the polygon of three edges with greatest
area relative to perimeter), as well as complex configurations of
very high dimensionality (Fusco, 2015; Kesavan, 2002). Quanti-
tative scores can be useful in determining the degree to which a
stimulus space matches a desired configuration, though consider-
able time and resources may be required to validate geometries of
high dimensionality.

Taken together, VCS space can be extended broadly as a re-
source to any experimenter who wishes to use shapes whose visual
similarity has been validated. For example, experimenters can use
VCS space for stimulus selection (e.g., by selecting shapes every
36 degrees’ distance to create a set of 10 unique shapes for each
participant; Figure 10A), greatly simplifying the stimulus design
process. Experimenters can additionally use the properties of VCS
space to gain precise control over the variation and the amount of
visual similarity of shapes sampled into multiple experimental
conditions (Figure 1B and Figure 10). For these reasons, VCS
space may be useful in any research domain which commonly uses
shape stimuli, including the study of attention (e.g., Connor, Egeth,
& Yantis, 2004), categorization (e.g., Jiang et al., 2007), cross-
modal correspondences (e.g., Chen, Huang, Woods, & Spence,
2016), ensemble perception (e.g., Whitney & Yamanashi Leib,
2018), shape symbolism (e.g., Spence & Ngo, 2012), short- and
long-term memory (e.g., Fukuda, Awh, & Vogel, 2010; Ma et al.,
2014; Sun, Fidalgo, et al., 2017; Yassa & Stark, 2011; Yonelinas,
2013), and statistical learning (e.g., Abla & Okanoya, 2009).
Moreover, the circular nature of VCS space can be directly ex-
tended for use with mixture models to capture both the resolution
of memories and the probability of outlier responses that resemble
random guesses (Bays, Wu, & Husain, 2011; Ma et al., 2014;
Nilakantan et al., 2018; Richter et al., 2016; Zhang & Luck, 2008,
2009), allowing for novel investigations of an underexplored fea-
ture type in this domain.

Though we are hopeful that VCS space will be useful to many
researchers, we are not suggesting that stimulus selection should
only ever be limited to validated circular spaces. Naturalistic
stimuli such as videos or real-world images may be more gener-
alizable than the simple colors, dots, lines, and words commonly
used in many experiments. However, naturalistic stimuli also have
their drawbacks, including the lack of precise experimenter control
for factors such as visual similarity. Though time consuming, the
development of complex stimulus spaces well-validated on differ-
ent types of subjective similarity may be one method to include
both the needed complexity of naturalistic stimuli and the needed
experimenter control of extraneous factors. Indeed, emerging re-
search has begun characterizing highly complex multidimensional
spaces for faces (Busey, 1998; Chang, Nemrodov, Lee, & Nestor,
2017; Hopper, Finklea, Winkielman, & Huber, 2014; Nestor,
Plaut, & Behrmann, 2016), real-world objects (Frank, Gray, &
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Montaldi, 2019; Hebart et al., 2019; Hout, Goldinger, & Brady,
2014; Migo, Montaldi, & Mayes, 2013), and methods to expedite
the validation of stimulus spaces (Hout, Cunningham, Robbins, &
MacDonald, 2018; Kriegeskorte & Mur, 2012). Complementing
this emerging direction of research, VCS space is the first tool
comparable to circular color space, allowing researchers explicit
control over the visual similarity of shape.
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