
© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

Cerebral Cortex, 2020;00: 1–19

doi: 10.1093/cercor/bhz250
Advance Access Publication Date:
Original Article

O R I G I N A L A R T I C L E

Experience Transforms Conjunctive Object
Representations: Neural Evidence for Unitization After
Visual Expertise
Jackson C. Liang1,*, Jonathan Erez2, Felicia Zhang3, Rhodri Cusack4 and
Morgan D. Barense1,5

1Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada, 2Department of Psychology,
Brain and Mind Institute, Western Interdisciplinary Research Building, Western University, London, ON N6A
5B7, Canada, 3Department of Psychology, Princeton University, Princeton, NJ 08540, USA, 4School of Psychology,
Trinity College Dublin, Dublin, Ireland amd 5Rotman Research Institute, Toronto, ON M6A 2E1, Canada

Address correspondence to Jackson C. Liang, Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada.
Email: jacksoncliang@gmail.com

Jackson C. Liang and Jonathan Erez contributed equally to this work

Abstract
Certain transformations must occur within the brain to allow rapid processing of familiar experiences. Complex objects are
thought to become unitized, whereby multifeature conjunctions are retrieved as rapidly as a single feature. Behavioral
studies strongly support unitization theory, but a compelling neural mechanism is lacking. Here, we examined how
unitization transforms conjunctive representations to become more “feature-like” by recruiting posterior regions of the
ventral visual stream (VVS) whose architecture is specialized for processing single features. We used functional magnetic
resonance imaging to scan humans before and after visual training with novel objects. We implemented a novel multivoxel
pattern analysis to measure a conjunctive code, which represented a conjunction of object features above and beyond the
sum of the parts. Importantly, a multivoxel searchlight showed that the strength of conjunctive coding in posterior VVS
increased posttraining. Furthermore, multidimensional scaling revealed representational separation at the level of
individual features in parallel to the changes at the level of feature conjunctions. Finally, functional connectivity between
anterior and posterior VVS was higher for novel objects than for trained objects, consistent with early involvement of
anterior VVS in unitizing feature conjunctions in response to novelty. These data demonstrate that the brain implements
unitization as a mechanism to refine complex object representations over the course of multiple learning experiences.
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Introduction
Our environment is filled with objects that vary greatly in their
visual complexity. Although the task of discriminating between
objects can often be solved on the basis of single diagnostic
features, more complex objects challenge the visual system to
discriminate between the combinations of multiple features
simultaneously. Given that much of the early visual system is
dedicated to processing simple features within a narrow foveal

receptive field, an important open question is how the brain
supports rapid decisions about objects with spatially distributed
visual features. One suggested mechanism is encapsulated
by hierarchical models of the ventral visual stream (VVS)
(Desimone and Ungerleider 1989; Gross 1992; Tanaka 1996;
Riesenhuber and Poggio 1999), where representations are
organized in increasingly complex conjunctions as information
flows from posterior to anterior VVS. A recent theory, termed
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Figure 1. Conjunction contrast. Our critical contrast investigated whether brain
patterns of activity demonstrated explicit conjunctive coding (i.e., was the whole

different from the sum of its parts?). To this end, we measured the patterns
of activity (schematized by a hypothetical region-of-interest consisting of 13
voxels) to each of the objects that were presented individually during the 1-
back task. We then computed linear summations of these patterns for three

different pairs of objects (i.e., A + BC, B + AC, and C + AB), which were matched
in terms of their individual features (A, B, and C), but different in terms of
their conjunction (i.e., AB, BC, and AC). If the pattern sums are not equivalent

(i.e., if A + BC �= B + AC �= C + AB), then the neural code must be conjunctive,
representing information about the specific conjunctions of features over and
above information pertaining to the individual features themselves.

the representational-hierarchical model, proposes that posterior
VVS represents simple features, whereas perirhinal cortex
(PRC) sits at the apex of this information stream, representing
complex conjunctions at the level of a whole object (e.g., Bussey
et al. 2002; Bartko et al. 2007; Cowell et al. 2010; Barense et
al. 2010, 2012a; Lee and Rudebeck 2010; Peterson et al. 2012;
Cacciamani et al. 2017). We recently developed a multivariate
method that revealed an explicit conjunctive code in PRC (Erez
et al. 2016). That is, neural patterns of PRC activity represented
information specific to the conjunction of features comprising
a complex object, over and above information regarding the
features themselves (Fig. 1). However, we still do not understand
how conjunctive representations in the brain might guide
subsequent behavior.

One crucial insight revealed through everyday experience is
that certain feature conjunctions can become highly familiar.
For example, a favorite pet dog’s individual features might
be shared with countless other dogs. However, it is that pet’s
specific conjunction of ears, tail, and fur that has a special
status, enabling it to stand out in a crowd of other dogs
at the park. In the brain, a perceptual learning mechanism
called unitization is thought to support the familiarization
of feature conjunctions (Goldstone 1998; Goldstone 2000).
According to this view, through extended learning, an object’s
individual features are integrated into a singular unitized
representation. Behavioral evidence for unitization exists across
many domains, including words (e.g., Smith and Haviland
1972; Laberge 1973), faces (e.g., Valentine 1988; Tanaka and
Farah 1993), and novel visual objects (e.g., Gauthier and Tarr
1997). However, evidence linking these observed effects to any
brain mechanism is limited to the observation that following

training, neurons in the inferotemporal (IT) cortex shift their
response selectivity towards the specific combinations of
features in simple stimuli (Baker et al. 2002). On the one hand, a
straightforward prediction would likewise suggest that repeated
experiences drive conjunction-sensitive neuron populations in
PRC to become more selective for their preferred conjunctions,
and show attenuated responses toward the component features.
On the other hand, the representational-hierarchical framework
presents a compelling complementary organization for unitized
conjunctions. Specifically, unitized conjunctive objects elicit a
simpler representational scheme akin to those of more basic
features supported by posterior regions of the VVS. The findings
of Baker et al. (2002) are also consistent with this idea, by
demonstrating that the representational architecture of primate
IT cortex was originally sensitive to parts but could be repur-
posed to be sensitive to object wholes through learning. Under
this view, PRC may guide the formation of these new unitized
representations via feedback to posterior VVS. Such interactions
are predicted by anatomical and functional studies (Clavagnier
et al. 2004; Peterson et al. 2012; Cacciamani et al. 2017).

The goal of the present study was to identify the neural
changes that support learning of object feature conjunctions. We
scanned participants using MRI both before and after intensive
training with a paradigm designed to promote the unitization
of objects (Czerwinski et al. 1992). We assessed the impact of
experience on conjunctive representations in the VVS, employ-
ing a unique design that allowed for the comparison of objects
that were identical at the feature-level, yet different in terms of
the conjunctive arrangement of these features. We used pattern
information analysis to observe learning-related changes in PRC
and posterior VVS at the conjunctive- and feature-levels. Finally,
we used functional connectivity (FC) analysis to assess whether
PRC shaped unitized representations through feedback to early
visual areas.

Materials and Methods
Participants

Twenty right-handed adults with normal or corrected-to-normal
vision (12 females, mean age = 23.6 years) were recruited from
the University of Toronto community for Session 1 of the
functional magnetic resonance imaging (fMRI) experiment.
The results from fMRI Session 1 were originally reported in
Erez et al. (2016). Fourteen participants returned to complete
Visual Search Training and fMRI Session 2 and entered into
a repeated-measures comparison of the pretraining Session
1 and posttraining Session 2. Additionally, we recruited four
participants who only completed Visual Search Training and
fMRI Session 2 but not fMRI Session 1. Thus, for analyses
requiring only fMRI Session 2, 18 right-handed adults with
normal or corrected-to-normal vision were available (11 females,
mean age = 23.4 years). All neuroimaging participants provided
written consent approved by the Baycrest Hospital Research
Ethics Board and received monetary compensation for their
participation. Thirty right-handed adults with normal or
corrected-to-normal vision (19 females, mean age = 20.6) were
recruited from the University of Toronto community for a
control experiment to assess the effect of body color on visual
processing. All participants in the control experiment were
provided written consent approved by the University of Toronto
Research Ethics Board and received monetary compensation for
their participation.
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Stimuli and Counterbalancing

Stimuli were color images of artificial 3D objects. These stimuli
were constructed in Strata Design 3D CX 6 and were used in
a previously published study of conjunctive representation in
the visual system (Erez et al. 2016). Each object belonged to a
specific family of seven objects whose members shared three
distinct features (e.g., features A, B, and C; Fig. 2A) and body color.
Each object within a family comprised 1, 2, or all 3 features such
that, for example, a full set of seven objects in a given object
Family could be summarized: A, B, C, BC, AC, AB, and ABC. Every
object was created using two different viewpoints (as in Erez
et al. 2016). However, viewpoint was not a factor of interest in
this experiment and subsequent analyses were collapsed across
viewpoint. Objects were presented centrally on the screen and
had a visual angle of 5.1◦ × 5.3◦.

Three groups of objects corresponding to specific body colors
were viewed over the course of the experiment. The first group
comprised two families of blue-bodied objects (Families 1 and
2; Fig. 2A) which were initially encountered in fMRI Session 1.
One family (e.g., Family 1 or 2) was assigned to the “Session 1
To-Be-Trained” condition, and the other family to the “Session
1 Novel” condition. These labels refer not to how much visual
exposure they received during Session 1 but rather their status
relative to the objects viewed in fMRI Session 2. Specifically, the
“To-Be-Trained” objects were held over to be used as Trained
objects in fMRI Session 2, but the “Novel” objects were replaced
by a new set of objects in fMRI Session 2 (e.g., Family 5 or
6; Fig. 2C). Hereafter, Families 1 and 2 will be referred to as
Session 1 To-Be-Trained and Session 1 Novel objects, respec-
tively, when describing neuroimaging analyses from Session
1, reflecting their still-equivalent training status at that point.
When describing neuroimaging analyses from Session 2, the
held-over Family 1 or 2 will be referred to as Session 2 Trained
objects, whereas Families 5 and 6 will be referred to as Session
2 Novel objects, reflecting their actual differences in training
status at that point. During Visual Search Training, the blue-
bodied families were studied extensively as part of the Learning
Set of objects. A group of objects comprising two families of
yellow-bodied objects (Families 3 and 4; Fig. 2B) belonged to the
Novel Probe Set and were encountered only on the sixth and
final day of Visual Search Training. The Novel Probe Set allowed
us to assess behavioral performance on a new set of objects with
no training history.

fMRI Session 1

To obtain a pretraining measure of the brain responses to novel
objects, we scanned participants while they performed four runs
of a 1-back repetition detection task with all of the objects
from Families 1 and 2 (Fig. 2A). On each trial, an object was
presented on screen for 1 s followed by a 2 s interstimulus inter-
val (ISI). Participants were instructed to rapidly respond with a
button press whenever an object appeared that was a duplicate
(regardless of viewpoint) of the preceding one. The trial order
of presented objects was organized in blocked fashion, where
all members of one family across both viewpoints were viewed
together in a mini-block of 14 objects. Each block contained two
mini-blocks of the same family (totaling 28 trials). The trial order
of objects within each mini-block was calculated using OptSeq2
(Dale 1999), to ensure that the neural response to each individual
object could be reliably estimated using a general linear model
(GLM). Three blocks each of Family 1 and Family 2 alternated,
totaling six blocks per run. Whether each run began with a block

of Family 1 or Family 2 was counterbalanced across participants.
Each block contained 1–4 targets (i.e., sequential repeats) such
that the proportion of target trials across the experiment was
10%. Each run lasted 11 min 30s, and for every 42 s of task
time, there was an 8-s break during which a fixation cross was
presented on screen. “Functional localizer”. To obtain functional
regions-of-interest (ROIs) representing distinct category-specific
components of the VVS, we conducted a scanned localizer task
where participants viewed face, object, scrambled object, and
scene stimuli while engaged in a 1-back repetition detection task
(for localizer details, see Erez et al. 2016).

Visual Search Training (6-Day Behavioral Protocol)

We invited participants to return for a 6-day Visual Search
Training protocol designed to promote the unitization of object
features (Czerwinski et al. 1992). On this task, unitization
is expected to improve conjunctive search in general, but
the benefit is most apparent in the presence of many dis-
tractors. Thus, the evidence of unitization can be identified
by the observation of shallower search slopes following
visual training (Fig. 3A), reflecting minimal search time cost
despite the presence of more distractors (e.g., Ashbridge et al.
1997).

Participant recruitment followed a long delay (minimum
100 days, average 287 days), during which the longitudinal
components of this study (Visual Search Training and fMRI
Session 2) were designed and participants from fMRI Session
1 were recruited. Importantly, there was always a 1-day delay
between the end of the Visual Search Training protocol and
fMRI Session 2, ensuring that training effects were recent and
consistent across participants. Participants completed six 1-h
visual training sessions, with each session taking place on a
different day. Each trial began with a display of a black fixation
cross for 1 s at the center of the screen, followed by a display
of a target object for 1 s, a blank screen for 1 s, and a search
array comprising between 1 and 8 objects (Fig. 2B, right panel).
These objects remained on the screen until a response was
made. On each trial, participants were asked to indicate whether
the target object was present or absent by pressing one of two
green colored buttons on a laptop keyboard (“L” if the target
was present and “A” if the target was absent). Participants
were instructed to respond as quickly as possible on each trial,
without sacrificing accuracy. One-second auditory feedback
was provided for each trial in the form of a high/low tone for
correct/incorrect response, respectively.

The stimuli used in Visual Search were the blue-bodied fam-
ilies from Session 1 (Families 1 and 2; Fig. 2B), comprising 14
objects each (seven from each viewpoint). Additionally, features
from both families were recombined to form a new set of 24 blue-
bodied objects (12 from each viewpoint) to be used as distractors
only. Features that occupied the same spatial location on the
object were not recombined. Altogether, these objects made up
the Learning Set of stimuli that would be extensively studied on
all 6 days of visual training. On the last day of training, a Novel
Probe Set of objects was introduced, comprising two new yellow-
bodied families (Families 3 and 4) of 14 objects each (seven from
each viewpoint). Features from both of these families were also
recombined to form a new set of 24 yellow-bodied objects (12
from each viewpoint) to be used as distractors only. The Novel
Probe Set enabled the observation of behavioral performance on
a set of objects with no training history, in direct contrast to the
Learning Set.
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Figure 2. Experimental design. (A) First fMRI session. The stimulus set comprised two families of blue-bodied objects composed of a single-feature, double-features,
or three features. One of these families was designated “To-Be-Trained”, to be viewed again during Visual Search Training and fMRI Session 2. The other family was
designated the “Novel” Set, to be viewed again during Visual Search Training but not in fMRI Session 2 (this designation was counterbalanced across participants).
Participants performed a 1-back repetition detection task. Repetitions included objects that repeated exactly or objects that were repeated but viewed from a different

angle (red-bordered squares). (B) Visual Search Training. The stimulus set comprised all objects viewed during the first fMRI session (Learning Set), along with two
new families of yellow-bodied objects used exclusively on Day 6 of training (Novel Probe Set). Features from Families 1 and 2 were recombined to generate distractor
objects for blue-bodied search targets, while Families 3 and 4 were used to create yellow-bodied distractor objects. In each visual search trial, participants indicated

whether the sample stimulus was present within an array of 1–8 objects. (C) Second fMRI session. The organization of stimuli was similar to the first fMRI session.
Critically, the Session 1 To-Be-Trained objects (Family 1 or 2) were reused as the Session 2 Trained object set, while a new family of red-bodied objects was introduced
here as the Session 2 Novel object set (Family 5 or 6).

On each trial, a target object was randomly selected from
the Learning Set. Half the trials were “target present” trials. A
target was considered present if the same object appeared in the
search array from either the same or a different viewpoint. The

remaining half of trials were “target absent” trials, in which only
distractor objects were presented in the search array. Possible
distractor objects were chosen to overlap with the target object
either in terms of the number of features present or in terms of
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Figure 3. Visual search training. (A) To obtain a measure of the behavioral
improvement expected to result from unitization, we calculated the slope of the
reaction time increase from smaller to larger visual search set sizes. Unitized

representations have a shallow search slope, mitigating the usual increase in
reaction time when searching in larger visual arrays. (B) Search slopes decreased
from the first to the last day of training (gray dots), suggesting that some degree
of unitization had occurred. On the last day, search slopes were shallower for

trained objects relative to a new set of novel objects (white dot), allowing us to
eliminate the possibility that the improvements were entirely related to general
practice effects. ∗P ≤ 0.05. ∗∗P ≤ 0.01. Error bars represent the standard error of
the mean across participants.

the specific features present. For example, if the target was an
object containing a single feature A, then distractors included
all other single feature objects and all objects containing fea-
ture A. For two- and three-featured objects (e.g., A1B1), possible
distractors included any objects that contained one or more of
its component features (e.g., A1, B1, A1C1, B1C1, A1B1C1, A1B2,
A1C2, A2B1, B1C2, and A1B1C2). Distractors always shared body
color with the target. Objects in the search array were presented
at random locations on an imaginary circle that included 10
possible slots around the (now absent) target object.

In each training session, participants completed four blocks
of the visual search task, each lasting approximately 15 min.
Each block comprised 20 trials from each of 1–8 possible stimuli
set sizes, resulting in (20 trials × 8 set sizes) 160 trials per
block or (160 trials × 4 runs) 640 trials per training session.
On the sixth and last training session, participants completed
two blocks with the blue-bodied Learning Set, followed by two
training blocks with the yellow-bodied Novel Probe set they had
not seen before.

fMRI Session 2

On the day following the completion of visual training, par-
ticipants returned for the second scanning session. To obtain

a posttraining measure of the difference in brain response to
learned and novel objects, participants were scanned while
performing four runs of the 1-back repetition detection task with
one family of blue-bodied objects representing the Session 2
Trained condition (e.g., Family 1 or 2; Fig. 2A) and one family of
red-bodied objects representing the Session 2 Novel condition
(e.g., Family 5 or 6; Fig. 2C). Specifically, to ensure that observed
effects were general across Session 2 Trained and Session 2
Novel families, half of the participants viewed one set of Session
2 Trained objects (Family 1) along with Session 2 Novel objects
(Family 5), while the remaining participants viewed another set
of Session 2 Trained objects (Family 2) along with the other
Session 2 Novel objects (Family 6). The organization and timing
of trials and target distribution in Session 2 mirrored Session
1, with each run alternating between the Trained and Novel
conditions. Functional localizer. We conducted a second localizer
in similar fashion to the first scanning session, but with a new
set of face, object, scrambled object, and scene stimuli.

fMRI Acquisition

Imaging data were acquired using a 32-channel head-coil
on a 3.0-T Siemens MAGNETOM Trio MRI scanner housed
at the Rotman Research Institute at Baycrest Hospital in
Toronto, ON. Each scanning session began with a whole-
brain T1-weighted magnetization-prepared rapid gradient-
echo (MPRAGE) structural image acquired in 160 1-mm-thick
oblique axial slices (192 × 256 inplane matrix). Functional brain
images were then acquired using a T2∗-weighted echo-planar
imaging (EPI) sequence [time repetition (TR) = 2000 ms; time
echo = 30 ms; flip angle = 78◦; field of view = 20 cm; interslice
gap = 0.5 mm; and 3.1 × 3.1 × 2.0 mm resolution]. A total of
389 functional volumes were acquired for each participant
over four scanning runs in Session 1. The second session was
performed using an identical scanning protocol, resulting in
778 functional volumes acquired across the two experimental
sessions. To allow for T1 stabilization, the first trial of each run
did not commence until 10 s (5 TRs) after the beginning of the
functional acquisition; data from this initial 10-s time period
were discarded and not used in subsequent analyses.

Imaging Data Preprocessing

Functional images were preprocessed and analyzed using SPM8
(www.fil.ion.ucl.ac.uk/spm) and a custom-made, modular tool-
box implemented in an automatic analysis pipeline system
(Cusack et al. 2015). In preparation for multivoxel pattern anal-
ysis (MVPA) and multidimensional scaling (MDS) analysis, the
data were preprocessed, which included the realignment of the
data to the first functional scan of each run (after 5 dummy
scans were discarded to allow for signal equilibrium), slice-
timing correction, co-registration of functional and structural
images, nonlinear normalization to the Montreal Neurological
Institute (MNI) template brain, and segmentation of gray and
white matter. Time series from each voxel were high-pass fil-
tered with a 128-s cut-off. The data were then “denoised” by
deriving regressors from voxels unrelated to the experimental
paradigm and entering these regressors in a GLM analysis of
the data, using the GLMdenoise toolbox for MATLAB (Kay et al.
2013). Briefly, this procedure includes taking as input a design
matrix (specified by the onsets for each stimulus regardless of
its condition) and an fMRI time-series, and returns as output
an estimate of the hemodynamic response function (HRF) and

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article-abstract/doi/10.1093/cercor/bhz250/5730339 by Bora Laskin Law

 Library user on 09 M
arch 2020

www.fil.ion.ucl.ac.uk/spm


6 Cerebral Cortex, 2020, Vol. 00, No. 00

blood oxygen level-dependent (BOLD) response amplitudes (beta
weights). To avoid circularity, this design matrix for denoising
component selection did not include the experimental condi-
tions upon which our contrasts relied; these conditions were
specified only after denoising the data. Next, a fitting procedure
selected voxels that are unrelated to the experiment (cross-
validated R2 less than 0%), and a principal components analysis
was performed on the time-series of these voxels to derive noise
regressors. A cross-validation procedure then determined the
number of regressors that were entered into the model (Kay et
al. 2013).

ROI Definitions

In preparation for the MDS and FC analyses (Analyses 2 and
3), we defined five ROIs a priori. Two ROIs, V1, and PRC were
defined anatomically. Specifically, V1 was demarcated using
FreeSurfer, which utilized landmarks localized to specific coor-
dinates in a cortical surface model as demonstrated in Hinds
et al. (2008). PRC was defined by an anatomical probability map
created by Devlin and Price (Devlin and Price 2007). We included
areas which had at least a 30% or more probability of being
the PRC, as done previously (Barense et al. 2011). Three were
functionally defined regions well-established as part of the VVS:
lateral occipital complex (LOC), fusiform face area (FFA), and the
parahippocampal place area (PPA). For our functional localizer,
we used identical stimuli to those employed in Watson et al.
(2012). We defined the LOC as the region that was located along
the lateral extent of the occipital lobe and responded more
strongly to objects compared with scrambled objects (P < 0.001,
uncorrected) (Malach et al. 1995). We defined the FFA as the
set of contiguous voxels in the mid-fusiform gyrus that showed
significantly higher responses to faces compared with objects
(P < 0.001, uncorrected), and the PPA as the set of contiguous vox-
els in the parahippocampal gyrus that responded significantly
more to scenes than to objects (P < 0.001, uncorrected) (Reddy
and Kanwisher 2007). These regions were defined separately
for each participant by a 10-mm radius sphere centered around
the peak voxel in each hemisphere from each contrast, using
the MarsBar toolbox for SPM8 (http://marsbar.sourceforge.net/).
All LOC and PPA ROIs were bilateral, except for one participant
in whom the right LOC could not be localized. FFA ROIS were
bilateral in 10 participants; for six participants, the left FFA could
not be localized, and for one participant, the right FFA was not
localized.

In addition, we defined one ROI post hoc. This ROI, hereafter
referred to as the “Trained > Novel Conjunction Contrast ROI”,
was functionally defined and captured the regions of posterior
VVS that showed the greatest training-related increase in con-
junctive coding. For each participant, we generated a 10-mm
radius sphere around the peak voxel in posterior VVS for the
Trained > Novel Conjunction Contrast searchlight from fMRI
Analysis 1. Because this ROI was functionally defined by fMRI
Analysis 1, it was only interrogated in fMRI Analyses 2 and 3
and in our Control Analysis 2 to rule out nonlinear biases in fMRI
Analysis 1 (described below).

fMRI Analysis 1: Identifying Training-related Changes
in Conjunctive Object Representations Using MVPA

We predicted that the spatial distribution of conjunction-based
neural responses would change following learning such that
posterior VVS regions would be recruited to represent the

unitized conjunctions. Specifically, we measured whether the
representation of a whole object differed from the combined rep-
resentations of its constituent features (i.e., explicit conjunctive
coding), and whether any such conjunctive representation was
modified by training. We examined the patterns of brain activity
evoked by three features distributed across two individually
presented objects during a 1-back task (Fig. 2C). Our critical
“Conjunction Contrast” measured the additivity of patterns
evoked by different conjunctions of features across object pairs:
A + BC versus B + AC versus C + AB, where A, B, and C each
represent an object comprising a single feature, and AB, BC,
and AC each represent an object comprising conjunctions of
those features (Fig. 1). In this Conjunction Contrast, the object
pairs were identical at the feature level (all contained A, B,
and C), but differed in their conjunction (AB vs. BC vs. AC),
allowing a clean assessment of the representation pertaining
to the conjunction, over and above any information regarding
the component features. A finding of equivalent additivity
(i.e., if A + BC = B + AC = C + AB) would indicate that information
pertaining to the specific conjunctions is not represented in
the patterns of activity. In contrast, if the pattern sums are not
equivalent (i.e., if A + BC �= B + AC �= C + AB), then the neural
code must be conjunctive, representing information about the
specific conjunctions of features over and above information
pertaining to the individual features themselves—consistent
with an explicit conjunctive coding mechanism.

Importantly, explicit conjunctive coding has been minimally
studied relative to other prevailing coding schemes, such as
feature-coding (Eckhorn 1999; Singer and Gray 1995). A recent
human fMRI experiment found that the additive multivoxel pat-
terns of individual objects (e.g., A and B) could largely explain the
pattern evoked by complex scene-like conjunctions comprising
A and B together (MacEvoy and Epstein 2011). Such demonstra-
tions that the whole can share much in common with the sum
of its parts have been taken as evidence that feature-coding can
account for all complex object representation. However, explicit
conjunctive coding proposes that certain brain regions are tuned
specifically to conjunctions rather than the component features.
In the past, the ability of univariate fMRI to localize this type
of representational scheme within the human brain has been
limited by the difficulty of deconfounding the response to fea-
ture conjunctions from the response to the individual features.
Recently, the multivariate “conjunction contrast” method devel-
oped by Erez et al. (2016) revealed explicit conjunctive coding in
PRC and LOC, giving us the first insight into a “whole” object
representation above and beyond the sum of its parts. Using
the procedure described below, we implement and extend this
approach to assess how the conjunctive code in VVS changes as
a function of experience.

The conjunction-based representation for novel objects was
previously shown by Erez et al. (2016) using the fMRI Session
1 data, where all objects were newly introduced. Thus, the
principal goals of the current analysis were 2-fold: (1) to replicate
this original finding with the Novel objects from fMRI Session 2
and (2) to investigate whether unitization training would evoke
a more posteriorly distributed response for the Session 2 Trained
objects. To this end, all 18 participants who were scanned in both
fMRI sessions were entered into a MVPA of their Session 2 data.
Following the procedure established by Erez et al., within each
run, we identified the onsets for each individual object (e.g., A,
B, C, AB, BC, and AC) split by training status (Session 2 Trained
objects and Session 2 Novel objects) and viewpoint (1 and 2).
To allow the comparison of the similarity of patterns evoked by
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multiple repetitions of the same object, these object conditions
were additionally split into two subdivisions whose onsets were
relatively equidistant in time; one subdivision comprised the
odd trials of every object, and the other subdivisions comprised
the even trials. Our model then specified a single regressor for
each unique conjunctive pair of objects (i.e., A + BC, B + AC, and
C + AB; Fig. 1). This was done separately for each condition split
by training status, viewpoint, and subdivision. For example, all
odd trial events (subdivision 1) corresponding to the singly pre-
sented “A” object from viewpoint 2 of the Session 2 Novel object
set were concatenated with all odd trial events corresponding to
the singly presented “BC” object from viewpoint 2 of the Session
2 Novel object set to create the single regressor for the Session
2 Novel “A + BC” conjunction from viewpoint 2 in subdivision
1. This procedure resulted in 24 regressors of interest per run
[2 (training statuses) × 2 (viewpoints) × 3 (conjunctions) × 2
(subdivisions)]. We also specified an additional 8 regressors of no
interest for each run: trials containing singly presented three-
feature objects (“ABC”), trials in which participants responded
with a button press on the 1-back task, and six realignment
parameters to remove residual noise due to motion. Events
were modeled with a delta (stick) function corresponding to the
stimulus presentation onset convolved with the canonical HRF
as defined by SPM8, and entered into GLMs for each run resulting
in parameter estimates (β) indexing the magnitude of response
during each of 8 repetitions (4 runs × 2 subdivisions) of a given
conjunction.

MVPA was performed on these parameter estimates using
Pearson correlation (for an introduction to the technique, see
Kriegeskorte et al. 2008). First, the correlations between every
combination of those repetitions were calculated and averaged
to obtain the within-conjunction correlation measure for a given
conjunction (e.g., Fig. 4C, on-diagonal squares). This calculation
was repeated for every conjunction derived from the Session 2
Trained and Session 2 Novel families across both viewpoints,
totalling 12 conjunction conditions (3 conjunctions × 2 families
× 2 viewpoints). Between-conjunction correlations (e.g., Fig. 4C,
off-diagonal squares) were computed similarly, being the aver-
age correlation between the eight repetitions of one conjunction
condition with the eight repetitions of any other conjunction
condition. This calculation was repeated for all possible pairings
of the 12 conjunction conditions to obtain the final 12 × 12
contrast matrix (similar to Linke et al. 2011).

A searchlight analysis was performed to test for multivoxel
pattern information across the brain (Kriegeskorte et al. 2006).
A spherical ROI (10-mm radius, restricted to gray matter voxels
and including at least 30 voxels) was moved across the entire
acquisition volume, and for each ROI, voxel-wise, unsmoothed
β-values were extracted separately for each regressor. Within
this ROI, our predefined contrast matrix containing our predic-
tions regarding the relative magnitude of pattern correlations
within and between conjunction types specified which matrix
elements were then subjected to a two-sample t-test (Fig. 4,
left panels). First, to test for the replication of the findings
from Erez et al. (2016), we localized the conjunctive code for
Session 2 Novel objects by subjecting the contrast comparing
within and between conjunction types to a two-sample t-test
for Session 2 Novel objects only (Fig. 4A, left). Then, we tested
the prediction that the conjunctive code is modified through
experience, by subjecting the contrast comparing within and
between conjunction types to a two-sample t-test for Session
2 Trained objects only (Fig. 4B, left). Critically, to directly capture
the distribution of regions where training status tracked changes

in the conjunctive code, we tested for regions that demonstrated
a stronger conjunctive code for Session 2 Trained objects relative
to Session 2 Novel objects (Fig. 4C, left). This analysis was first
performed on a single-subject level, and a group statistic was
then calculated from the average results, indicating whether
the ROI under investigation coded information according to
the similarity matrix. Information maps were created for each
subject by mapping the t-statistic back to the central voxel
of each corresponding ROI. These single-subject t-maps were
then smoothed with a 12-mm full width at half maximum
(FWHM) Gaussian kernel to compensate for anatomical vari-
ability across participants. The resulting contrast images were
then subjected to a group analysis that compared the mean
parameter-estimate difference across participants to zero (i.e.,
a 1-sample t-test relative to zero). Results shown are overlaid
on the single-subject MNI brain template. Experimental effects
exceeding a threshold of P < 0.001 (uncorrected) were considered
significant. Cluster-level significance was obtained via Monte
Carlo simulation implemented in AlphaSim. All reported clus-
ters exceeded a threshold of P < 0.001 corrected by Family-wise
error (FWE).

fMRI Analysis 2: Visualizing the Separation of
Individual Object Representations Using MDS Analyses

We predicted that extended experience with an object would
alter the perception of its visual form such that the repre-
sentations of individual objects would become more distinct
with increased familiarity. In addition, the representational-
hierarchical view proposes a layered model that enables the
learning-related separation of individual object features (i.e.,
feature tuning) within posterior VVS and the separation of fea-
ture conjunctions within anterior VVS. Crucially, experience
with features solely enhances feature tuning; to enhance tuning
of conjunctive representations comprising those features, the
specific conjunctions must themselves be repeatedly experi-
enced (Sadil and Cowell 2016). Thus, we used an ROI-based
approach with MDS analyses on the data from both pre and
posttraining fMRI Sessions to ask which brain regions demon-
strated greater distinction between object representations after
training. The 14 participants who completed both fMRI Sessions
1 and 2 were entered into the MDS analysis.

To obtain the brain response evoked by individual objects,
we modeled trial events in a similar fashion to fMRI analysis
1. Within each run, we specified the onsets for each individual
object (e.g., A, B, C, AB, BC, AC, and ABC) split by training status
(Session 1 To-Be-Trained objects and Session 1 Novel objects),
viewpoint (1 and 2), and subdivisions (1 and 2). This resulted
in 56 regressors of interest per run [2 (training statuses) ×
2 (viewpoints) × 7 (conjunctions) × 2 (subdivisions)]. We also
modeled seven regressors of no interest for each run: trials in
which participants responded with a button press on the 1-back
task and six realignment parameters to remove residual noise
due to motion. Events were modeled with a delta (stick) function
corresponding to the stimulus presentation onset convolved
with the canonical HRF as defined by SPM8, and entered into
GLMs for each run resulting in parameter estimates (β) indexing
the magnitude of response during each of eight repetitions
(4 runs × 2 subdivisions) of a given object. These GLMs were
conducted for each run in fMRI Sessions 1 and 2.

We employed a priori ROIs that each embodied different
layers of the representational hierarchy: V1 representing the
simplest visual features, FFA, LOC, and PPA representing more
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Figure 4. Training-related changes in the conjunction contrast for (A) Session 2 Novel objects and (B) Session 2 Trained objects. Left: MVPA correlations within and

between conjunctions were summarized in a matrix structure. This contrast tested whether correlations between the repetitions of the same conjunctions (dark
squares) were greater than correlations between different conjunctions, despite comprising the same features (light squares). Right: regions where the conjunctive
representations for objects were different from the sum of their individual features. The conjunction contrast for Novel objects evoked the focal clusters of conjunctive

representation within right PRC and bilateral LOC, whereas the conjunction contrast for Trained objects evoked an extensive posterior representation within the VVS.
Because our effects were primarily related to changes in the distribution and not necessarily the magnitude of significant clusters, a different view was selected for
each conjunction contrast to best capture their extents. x, y, and z values indicate where each viewing plane was located. (C) Conjunction Contrast: Trained > Novel.
We identified regions that showed greater conjunctive coding for Trained objects relative to Novel objects. All maps are shown (voxel-level P < 0.001, uncorrected,

cluster-level P < 0.001 FWE). All clusters shown exceeded a cluster-level extent calculated from Monte Carlo simulation implemented in AlphaSim and thresholded at
P = 0.001 FWE. The conjunction contrast for Trained > Novel revealed a focal cluster of conjunction representation within left PRC and a broader representation within
posterior VVS.
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Neural Evidence for Unitization After Visual Expertise Liang et al. 9

complex features, and PRC representing the most complex
feature conjunctions composing objects. We also employed the
Trained > Novel Conjunction ROI to examine how individual
objects are represented within areas showing the strongest con-
junctive code. Within each ROI, we calculated the pattern simi-
larity between GLM-based beta estimates corresponding to each
individual object. The pattern similarity was expressed simply
as the Pearson’s correlation between the linearized voxel pat-
terns extracted from an ROI mask of two different beta images.
This process was repeated on multiple subsections of data for
each participant; specifically, the beta patterns for every object
shown in a given run and subdivision (e.g., Run 1, Subdivision 1)
were correlated to generate a representational similarity matrix
(RSM). Across four runs and two subdivisions, this process
resulted in eight RSMs for each participant. In preparation for
MDS, each participant’s eight RSMs were averaged into a single
RSM and converted into a representational dissimilarity matrix
(RDM) by taking the difference between each matrix value and 1
(Fig. 5A). We implemented an MDS procedure that iteratively
randomized exemplar positions in high-dimensional space,
with error being minimized when the spatial distances between
exemplar positions closely matched the target RDM. Individual
squares of the RDM exhibiting the highest variance across
participants (top 1%) were replaced with blanks, allowing them
to act as additional degrees of freedom for error minimization on
the remainder of the data. In particular, this means that even if
the observed distance between any two exemplars is highly vari-
able, their final positions can still be estimated on the strength
of their more reliable relationships with other exemplars in the
dataset. MDS was implemented in MATLAB using a nonmetric
stress criterion for obtaining goodness of fit (i.e., STRESS1,
normalized by the sum of squares of interpoint distances), and
was conducted for every RDM from each ROI and participant.

We visualized MDS plots in 2D, where the distances between
individual objects represent the corresponding dissimilarities
between their neural responses (Fig. 5B). We then calculated
the mean interexemplar distances between points within each
session and training condition in each ROI. Because the Session
1 Novel objects and Session 2 Novel objects were represented
by unrelated stimuli with different body colors (e.g., Family 2
vs. Family 5), repeated-measures ANOVA was not conducted
to determine the contribution of training status or the
interaction between training status and session as factors in the
data. Instead, planned pairwise comparisons were calculated
independently within each session to determine whether
there were significant differences in interexemplar distances
between objects from each training condition. To account for
the contribution of stimulus differences (i.e., body color) to
participants’ ability to unitize in the experiment, we conducted
an independent control experiment described in “Control
Analysis 1.” Additional pairwise comparisons assessed whether
the mean interexemplar distance changed (1) between Session
1 To-Be-Trained objects and Session 2 Trained objects and (2)
between Session 1 Novel objects and Session 2 Novel objects.
Note that while 2D-MDS calculated from a group-averaged RDM
was the most visually clear rendering of the trends we observed
in our data as they pertain to our two factor design (session and
training status), our inferential statistics were performed on
the results from 3D-MDS calculated on a per-subject basis. This
allowed us to ensure that the trends we observed in the visual-
ized group MDS were consistently present across participants.
In combination with our RDM outlier detection procedure, this
makes MDS as a crucial component of our statistical approach.

Figure 5. Separation of individual object representations. (A) We calculated the
pairwise pattern similarities between the brain responses evoked by each Novel

object and To-Be-Trained object in Session 1, and Novel and Trained object
in Session 2. Similarities were converted into dissimilarities and populated a
matrix where darker squares represented higher dissimilarity. For illustrative
purposes, only a portion of an example participant’s full dissimilarity matrix

is shown here. (B) A group-level dissimilarity matrix was calculated and then
fitted using an iterative MDS function. The result was an MDS plot, where the
spatial distance between plotted objects reflected the dissimilarity between
their brain responses. (C) We calculated MDS plots for each ROI, with the Session

1 objects plotted in gold, and the Session 2 objects plotted in blue. To-Be-Trained
and Trained (filled in) dots represent the same family of objects (e.g., Feature
Set 1 from Fig. 1) presented before and after visual training, while the Novel

(hollow) dots represent two different sets of objects (e.g., Feature Sets 2 and 5)
introduced as unfamiliar objects in Session 1 and Session 2, respectively. We
observed significantly greater distances between Session 2 objects relative to
distances between Session 1 objects in FFA, LOC, PPA, and V1, but not PRC.

We also observed a significant difference between Sessions in our Trained >

Novel Conjunction Contrast ROI, representing a sphere around the peak of our
Trained > Novel Conjunction Contrast searchlight from Figure 4. Thus, visual
training was associated with greater distinction between the representations of

individual objects in the VVS.
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fMRI Analysis 3: Assessing Changes in Connectivity
Between VVS Subregions Following Training

We considered that the learning of object conjunctions would
be supported by close interactions between those brain regions
supporting conjunctive representations and those supporting
single-feature representations. Specifically, we hypothesized a
priori that feedback from PRC played an important role in shap-
ing object representations in posterior VVS during learning,
based on established anatomical and functional studies in sup-
port of feedback influence between these regions (Clavagnier
et al. 2004; Peterson et al. 2012; Barense et al. 2012b). There-
fore, we limited our analyses to understanding how PRC was
functionally connected to the other posterior VVS regions over
the course of fMRI Sessions 1 and 2. The 14 participants who
completed both fMRI Sessions 1 and 2 were entered into the FC
analysis.

In the Session 1 data, we used PRC as a seed region to
create separate time-series of FC between each ROI and the seed
(Fig. 6A). Predicated on the assumption that FC may greatly fluc-
tuate especially in the context of a rapid event-related design, we
used a sliding window approach using a window size of four TRs
(i.e., 8 s; see Hutchison et al. 2013 for a review of the technique).
This window size was chosen to ensure that a minimum of
one hemodynamic response could be captured by each window.
The mean activation across voxels for each ROI (PRC, FFA, PPA,
LOC, V1, and the Trained > Novel Conjunction Contrast ROI)
was extracted from each TR to obtain time-series restricted to
the sliding window. We then calculated Pearson’s correlations
between the windowed time-series of the PRC seed and all other
ROIs. The resulting correlation metrics were then assigned to the
first TR of the window. The window was then moved forward one
TR (i.e., 2 s), and the process was repeated until the window ter-
minated at the end of the session. We averaged the correlations
across timepoints within each of the Session 1 To-Be-Trained
and Session 1 Novel conditions to obtain separate connectivity
measures for To-Be-Trained and Novel objects in Session 1. This
process was repeated for the Session 2 Trained objects and
Session 2 Novel objects. In Session 1, the familiarity status of all
objects were the same (the “To-Be-Trained” and “Novel” labels
indicated only whether they would subsequently be used as the
Trained set in Session 2), and thus we predicted that we would
find no FC differences between the Session 1 To-Be-Trained
and Session 1 Novel objects. However, we expected that Visual
Search Training would have a differential effect on Session 2
Trained objects relative to Session 2 Novel objects. Because
the Session 1 Novel objects and Session 2 Novel objects were
represented by unrelated stimuli with different body colors (e.g.,
Family 2 vs. Family 5), repeated-measures ANOVA was not con-
ducted to determine the contribution of training status or the
interaction between training status and session as factors in the
data. Instead, planned pairwise comparisons were calculated
independently within each session to determine whether there
were significant differences in FC with PRC between objects
from each training condition. To account for the contribution
of stimulus differences (i.e., body color) to participants ability to
unitize in the experiment, we conducted an independent control
experiment described below.

Control Analysis 1: Perceptual- Versus
Training-dependent Biases in Visual Processing

The neuroimaging dataset from the pretraining fMRI session
(fMRI Session 1) was obtained from an earlier experiment

designed to identify explicit conjunctive codes within VVS
(Erez et al. 2016). A crucial aspect of that approach was
to ensure that each conjunction was drawn from one of
two consistent and unique feature sets (Families 1 and 2,
respectively; see Fig. 2A). This method naturally extended to
our present goal of understanding how conjunctive coding is
transformed via experience; in one counterbalancing group,
we were able to select one of the two object Families for
additional training (e.g., Family 1) and introduce a novel object
Family (e.g., Family 5; see Fig. 2C) to identify any effects of
training status in the posttraining fMRI session (fMRI Session
2). In the other counterbalancing group, we selected Family 2
for additional training and introduced novel object Family 6
for posttraining comparisons. To ensure that families would
not be confused across sessions and that all components of
the novel objects from Session 2 were entirely novel, Session
1 Families had blue bodies, whereas Session 2 bodies were
red.

Our pretraining analysis approach was to compare two Fami-
lies of equivalent training status (i.e., neither Family 1 nor Family
2 had undergone any visual training), leading to a comparison
between two blue-bodied object Families. On the other hand, our
posttraining analysis approach was to compare two Families of
differing training status (for example, Family 1 underwent train-
ing, but Family 5 was novel), leading to a comparison between
a blue-bodied object Family and a red-bodied object Family.
It was, therefore, necessary to ensure that our neural effects
presumed to arise from differences in training status could not
be instead the result of explicit differences in visual processing
performance between object body colors per se.

To that end, we conducted a control visual search study
using an independent sample of 30 participants (described in
“Participants” section above) and directly tested the possibility
that an interaction between a Family’s body color and its
physical features led to explicit differences in behavioral perfor-
mance that could bias the neuroimaging results. Specifically, we
assessed participants’ visual search performance on the three
pairs of object Families corresponding to the Families observed
in the main experiment: (1) the blue-bodied objects introduced
in fMRI Session 1; (2) the yellow-bodied objects introduced
during Visual Search Training; and (3) the red-bodied objects
introduced in fMRI Session 2. Unlike the Visual Search Training
phase in the main experiment, however, here, all objects
were introduced within the same and only testing session.
Furthermore, the order of presentation of the three colors was
counterbalanced across participants, ensuring that any signifi-
cant differences in behavioral performance between Families
could only be the result of immediate differences in visual
processing.

Although the overall structure of the control experiment
was abbreviated relative to Visual Search Training in the main
experiment (data were collected in a single day compared with
six separate days), they were otherwise identical in terms of the
structure of their individual trials. Specifically, each trial began
with a fixation cross displayed for 1 s, followed by a sample
period for 1 s wherein participants were instructed to hold
the target object in mind. This was followed by a delay period
of 1 s, and finally a visual search period wherein participants
were instructed to indicate whether the target was present in
a visual search array containing 1–8 distractor objects sharing
the same body color. The construction of distractor objects and
their placement within each search array were implemented
in identical fashion to the Visual Search Training from the
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Neural Evidence for Unitization After Visual Expertise Liang et al. 11

Figure 6. Training-related changes in FC between PRC and posterior VVS. (A) We measured the moment-to-moment FC between PRC and posterior VVS ROIs using a

sliding window that comprised four functional volumes (black box). We calculated the average FC values during blocks of Session 2 Novel objects (white background)
and blocks of Session 2 Trained objects (gray background) to obtain FC measures for each training condition. (B) Following visual training, we observed significantly
greater FC with PRC for Session 2 Novel objects relative to Session 2 Trained objects in PPA, V1, and the Trained > Novel Conjunction Contrast ROI. By comparison, we
observed no significant differences in FC with PRC between Novel and Trained objects in any of the tested ROIs in Session 1. Thus, heightened interactions between PRC

and VVS regions were uniquely associated with the presentation of novel objects, consistent with the idea that PRC guides the formation of unitized representations
in posterior VVS.

main experiment (for full details, see Material and Methods for
Visual Search Training). Altogether, there was one block of 208
trials with a blue-bodied target object, one block of 208 trials
with a yellow-bodied target object, and one block of 208 trials
with a red-bodied target object. Each block of a given body
color was split across two consecutive testing runs of 104 trials
each. Within a block, every object from each feature set (e.g.,
Families 1 and 2 for blue-bodied objects) and each viewpoint
(1 and 2) were used as target objects four times. The specific
order in which objects from within each Family and viewpoint
were used as targets within a block was randomized across
participants.

Because each body color was presented in consecutive task
blocks, we anticipated that participants’ visual search perfor-
mance would improve as they transitioned from one color to
the next. However, our goal was to determine the effect of
body color on search performance above and beyond practice
effects arising from the ordering of those colors across task
blocks. Therefore, we disentangled the relative impact of order,
color, and the interaction between order and color by calculat-
ing a linear mixed model with those factors entered as fixed
effects. Participant was entered into the model as a random
effect, using variance components as the covariance structure.
We conducted one linear mixed model for each of our two
dependent variables: hitrate and search slope. In our statistical
reporting, we acknowledge that reporting effect sizes for each
of the parameter estimates in the mixed model is subject to
varying methodologies and interpretability issues. Therefore, we
did not report effect sizes. Instead, we reported the F-statistic
and P-value solely as a way to test for the presence of significant
factors in our model and not as a way to assess the magnitude
of their effects. Because we designed these objects to be similar
in visual complexity, we did not expect to observe a significant
effect of color. Nonetheless, for each dependent variable, we also
conducted follow-up pairwise comparisons between each body
color to ensure that no particular set of object Families was
processed with greater speed or accuracy relative to any other.
We calculated a paired t-test for each comparison and reported
effect size as Cohen’s d.

Control Analysis 2: Non-linear Coupling of Neuronal
and BOLD Response

We also tested the possibility that signal saturation at the level
of individual voxels for features could have inflated decodability
in the multivariate patterns. Voxels already near saturation
in response to any single-feature would likely respond more
weakly than expected when a second feature is added, due
to the saturation of the BOLD signal (i.e., they would show
subadditivity, Supplementary Fig. 3A). This would introduce a
difference in the responses to multifeature objects that could
have been misinterpreted as a neuronal conjunctive response.
To investigate the possibility of this effect being present in our
dataset, we characterized the signal properties of the voxels
in our Trained > Novel Conjunction Contrast ROI—the region
of the brain demonstrating maximal response to our primary
multivariate contrast of interest.

Voxel-wise Signal to Single- and Double-feature Objects
First, we examined how, at the level of individual voxels, the
response scaled up from single-feature objects (e.g., A or B) to
double-feature objects (e.g., AB). For signal saturation to occur,
the responses to double-feature objects must be higher than
that evoked by single-feature objects (Supplementary Fig. 3A).
To investigate this, we overlaid the single- and double-feature
distributions of voxel-wise response amplitudes, expressed as
the proportion of total number of voxels in the ROI. To quan-
tify whether any portion of the distributions significantly dif-
fered between single- and double-feature objects, we calculated
paired Student’s t-tests at each level of response amplitude.
To ensure that any slight differences were not due to signal
saturation, we tested for a biophysical ceiling effect in each
single-feature and double-feature object response distribution.
We exploited the fact that signal saturation would limit the
highest levels of response amplitude and negatively skew the
overall response distribution (Supplementary Fig. 3B, blue curve).
To investigate this possibility, we calculated whether the double-
feature response distribution was more negatively skewed rela-
tive to the single-feature response distribution.
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The Influence of Univariate Single-Feature Response Amplitude on
Multivariate Contrasts
Another possibility is that a divisive normalization mechanism
(Heeger 1992) may operate to prevent saturation when pre-
sented with multiple features (MacEvoy and Epstein 2009). This
process could attenuate the responses to individual features
when presented within a conjunction (e.g., AB) but not when
presented singly (e.g., A), leading to a mismatch in the uni-
variate response to that feature across different object con-
junctions in our study (e.g., the response to A being lower in
AB + C relative to A + BC). Such a mismatch could influence
our multivariate contrasts by inflating the distributed activation
differences between the conjunctions. Moreover, the stronger
the response to the individual feature, the larger the conse-
quence of divisive normalization and the resulting confounding
effect. Therefore, we additionally tested whether the voxels that
showed strong univariate responding could have systematically
biased our multivariate tests toward significance. In a GLM, we
modeled trials containing single-feature objects separately from
trials containing double-feature objects. We then distributed
the voxel-wise univariate response amplitudes to single-feature
objects into five bins, with the first quantile representing the
top 80–100% of the univariate response amplitude range, con-
tinuing until the last quantile representing the bottom 1–20% of
the univariate response amplitude range. The mean t-statistic
from the Trained Conjunction Contrast searchlight (as shown
in Fig. 4B) was then calculated across the voxels in each bin.
The results were then averaged across participants. This process
was repeated for the mean t-statistic from the Novel Conjunc-
tion Contrast searchlight (as shown in Fig. 4A). Using repeated-
measures ANOVA, we calculated a linear contrast to determine
whether the mean conjunction contrast t-statistic increased
or decreased systematically across the single-feature response
range.

Results
1-Back Behavioral Performance

A 1-back task was used during scanning to ensure whether the
participants attended the stimuli. The proportion of correctly
identified repeating stimuli (hits; H) and stimuli incorrectly
identified as repeats (false alarms; FA) was calculated for each
session. Sensitivity (dL) was calculated from these H and FA
rates by applying signal detection theory to logistic distributions:
dL = ln([H(1 − FA)]/[(1 − H)FA]) (Snodgrass and Corwin 1988). Per-
formance on the 1-back task on Session 1 (reported previously in
Erez et al. 2016) was very good (dL > 7). For Session 2, overall per-
formance was very high (dL > 7). A paired samples t-test between
Session 2 Trained objects and Session 2 Novel objects revealed
no significant difference between the two training conditions
(t(17) = 0.19, P = 0.85, d = 0.046), indicating that sensitivity in the
1-back task was not higher for trained objects. However, the
absence of a difference in 1-back performance between Trained
and Novel objects does not speak to whether representations for
these objects were unitized. Specifically, this 1-back task was
designed solely to ensure that participants maintained atten-
tion, and we anticipated that performance would be universally
high and thus unlikely to demonstrate differential performance
across training conditions. Instead, to provide the evidence of
unitization, we relied upon results from the Visual Search Task
(described below) which was specifically designed for this pur-
pose.

Visual Search Training Behavioral Performance

To ensure that some degree of unitization had occurred for
the highly trained Learning Set objects, we calculated the slope
of the increase in reaction time from search array set size 1
to set size 8. We predicted that untrained objects would be
characterized by a steep search slope (Fig. 3A, left), where search
is fast at small set sizes but slows down at large set sizes
(e.g., Treisman and Sato 1990). By contrast, the unitization of
trained objects is thought to allow relatively fast search even
at larger set sizes, resulting in a shallow search slope (Fig. 3A,
right) (Ashbridge et al. 1997). Thus, we calculated participants’
visual search slopes from Day 1 to Day 6 to determine whether
behavioral performance indeed reflected a decrease in visual
search slope with more training (Fig. 3B). A repeated-measures
ANOVA revealed a significant linear contrast in search slope
from Day 1 to Day 6 (F(1,17) = 7.47, P = 0.01, η2 = 0.31) and no sig-
nificant effects for quadratic, cubic, or any other tendency in the
slope (all F(1,17) < 4.39, all P > 0.05, all η2 < 0.21). Direct comparison
of the first and final days of training showed that the slope
from Day 6 was significantly lower than the slope from Day
1 (t(17) = 2.88, P = 0.01, d = 0.79). To investigate the role of gen-
eral task practice effects, we introduced the Novel Probe Set
of yellow-bodied objects on Day 6. If general practice effects
were the sole cause of search improvement, these Novel Probe
objects would be processed just as quickly as the Learning Set
objects. However, if improvement was the result of unitized
representations specific to Learning Set objects, we would find
Novel Probe objects to be processed slower by comparison. Two-
tailed t-tests showed that on Day 6, the visual search slope for
the Learning Set objects was indeed significantly lower than the
search slope for Novel Probe objects (t(17) = 2.78, P = 0.013, d = 0.37),
suggesting that improvements for the Learning Set objects were
likely related to unitization rather than practice. However, some
effect of practice may be present as well; the visual search slope
for Novel Probe objects on Day 6 was numerically lower than
Learning Set objects on Day 1 (t(17) = 1.47, P = 0.16, d = 0.41).

fMRI Analysis 1: Training-Related Changes in
Conjunctive Object Representations

The first whole-brain MVPA searchlight analysis on the
imaging data from fMRI Session 2 identified voxels for which
there was conjunctive representation of the Session 2 Novel
objects. This analysis revealed significance (voxel-level P < 0.001,
uncorrected; cluster-level P < 0.001 FWE), including highly focal
clusters in bilateral LOC (Fig. 4A, right peak x, y, z = 26, −94,
−8, respectively, z-score = 4.20, left peak x, y, z = −20, −84, −10,
respectively, z-score = 4.81) and right PRC (peak x, y, z = 36, 0,
−36, respectively, z-score = 3.90). For the full report of significant
clusters, see Supplementary Material, Supplementary Table 1.
These results replicate the findings of Erez et al. (2016). We then
applied the same searchlight analysis to the Session 2 Trained
objects and revealed a different spatial distribution of significant
voxels. Unlike the Session 2 Novel objects, the conjunction
contrast for Session 2 Trained objects identified a qualitatively
more diffuse distribution of significant clusters (Fig. 4B).
However, the major peaks corresponded to right FFA (peak x,
y, z = −46, −8, −36, respectively, z-score = 4.47) and bilateral PPA
(left peak x, y, z = 14, −64, −6, respectively, z-score = 4.39, left
peak x, y, z = −30, −70, 4, respectively, z-score = 5.18). Finally,
we conducted an MVPA searchlight to reveal voxels whose
searchlight demonstrated stronger conjunctive coding for
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Session 2 Trained objects compared with Session 2 Novel objects
(Fig. 4C). This analysis produced a focal cluster with a peak in
left PRC (peak x, y, z = −38, −6, −32, respectively, z-score = 3.81), as
well as a large isolated cluster that spanned bilateral posterior
VVS (right peak x, y, z = −36, −52, −18, respectively, z-score = 4.61,
left peak x, y, z = 36, −56, −18, respectively, z-score = 3.52) that
overlapped with FFA and PPA. These data show that experience
with objects recruits additional conjunctive representation in
more posterior VVS regions. To investigate the functional role
of the training-sensitive conjunctive code within posterior VVS,
we identified the bilateral peak voxels for this Trained > Novel
contrast within each participant and created 10-mm radius
spheres (see ROI in the Materials and Methods section). In the
next sections, this “Trained > Novel Conjunction Contrast ROI”
was interrogated along with the other regions already described
here.

fMRI Analysis 2: Separation of Individual Object
Representations

We also asked whether the participants’ representation of indi-
vidual objects became more distinct once participants were
more expert with each object’s visual form. In the brain, increas-
ing visual distinction would be characterized by greater sepa-
ration in neural representations. Thus, we predicted that brain
regions crucial for the representation of visual form would show
highly separated responses to individual object exemplars after
visual search training (Fig. 5B). For each ROI, we used MDS analy-
sis to plot the individual object exemplars in a multidimensional
space, with greater distances reflecting greater representational
separation.

Mean interexemplar distances were calculated for each train-
ing condition in each session (Fig. 5B; e.g., mean pairwise dis-
tances between all hollow gold dots reflecting the mean interex-
emplar distance for Session 1 Novel objects). We first predicted
no difference between the mean interexemplar distance for all
Session 1 To-Be-Trained objects and the mean interexemplar
distance for all Session 1 Novel objects, owing to their equivalent
training status. A paired-sample t-test of the mean interexem-
plar distances revealed no significant difference between Ses-
sion 1 To-Be-Trained objects and Session 1 Novel objects in any
ROI (Fig. 5C, all t(13) < 1.56, all P > 0.20, all d < 0.13). Interestingly,
a paired-sample t-test of the mean interexemplar distances in
fMRI Session 2 also revealed no significant difference between
Session 2 Trained objects and Session 2 Novel objects in any
ROI (all t(13) < 1.88, P > 0.08, all d < 0.18), despite the difference
in exposure and training history between the two conditions.

We then considered whether the mean interexemplar
distances changed between fMRI Session 1 and fMRI Session
2 within either training condition. For each ROI, we first
calculated a paired-sample t-test between the Session 1 To-
Be-Trained objects and the Session 2 Trained objects, which
revealed two distinct patterns of results. First, PRC showed
no significant difference in mean interexemplar distance
between sessions (Fig. 5C; t(13) = 1.41, P = 0.18, d = 0.50). When
considering more posterior components of the VVS—FFA, LOC,
PPA, and V1—we found that interexemplar distances in fMRI
Session 2 were significantly greater than those observed in
fMRI Session 1 (FFA t(13) = 2.57, P = 0.02, d = 1.02; LOC t(13) = 2.90,
P = 0.01, d = 1.19; PPA t(13) = 2.58, P = 0.02, d = 1.04; V1 t(13) = 2.52,
P = 0.03, d = 0.98). Pairwise comparisons were also conducted
on the Session 1 Novel objects and the Session 2 Novel
objects. In PRC, we observed no significant difference in

mean interexemplar distance between sessions (t(13) = 1.43,
P = 0.18, d = 0.55). Interestingly, the posterior components of VVS
demonstrated significantly greater interexemplar distances for
Session 2 Novel objects relative to Session 1 Novel objects (FFA
t(13) = 2.20, P = 0.05, d = 0.88; LOC t(13) = 2.90, P = 0.01, d = 1.16; PPA
t(13) = 2.52, P = 0.03, d = 1.04; V1 t(13) = 2.49, P = 0.03, d = 0.93).

In the Trained > Novel Conjunction ROI, we found the same
pattern of results as we observed in other regions of posterior
VVS. First, interexemplar distances did not differ by training
condition within either Session 1 (t(13) = 1.85, P = 0.09, d = 0.25)
or Session 2 (t(13) = 1.28, P = 0.22, d = 0.38). Second, interexemplar
distances increased from fMRI Session 1 to fMRI Session 2 across
both Trained (t(13) = 3.46, P = 0.004, d = 0.94) and Novel objects
(t(13) = 2.48, P = 0.03, d = 0.89). Altogether, the results show that
the representations of individual objects become increasingly
separated with visual training in posterior VVS. Interestingly,
this object separation effect was observed in the same region
that showed strong conjunctive coding for the trained objects.
However, the impact of training on individual object representa-
tions persisted across the entire class of objects, including novel
members of that class. Lastly, the representations of individual
objects were unchanged in PRC after training, leaving open the
question of whether PRC plays any role in shaping the represen-
tations in posterior VVS during learning, a question which we
address in the next analysis.

fMRI Analysis 3: Changes in FC Between PRC and
Posterior VVS Following Extended Learning

We predicted that learning-related changes in the distributed
representations of objects would rely on input or feedback
from PRC. To test this possibility, we calculated the moment-
to-moment connectivity between each ROI and the PRC seed
region using a sliding window approach (Fig. 6A). We predicted
that PRC-VVS connectivity would differ solely between Session
2 Trained objects and Session 2 Novel objects, after Visual
Search Training had occurred. By contrast, we anticipated that
there would be no difference in PRC-VVS connectivity between
Session 1 To-Be-Trained objects and Session 1 Novel objects,
owing to the fact that neither had been trained at this point.

To test these predictions, within each session, we conducted
planned pairwise comparisons of connectivity with PRC
between objects from each training condition. Prior to training,
this analysis did not reveal any significant differences between
Session 1 To-Be-Trained objects and Session 1 Novel objects
within any ROI (not pictured; all t(13) < 1.60, all P > 0.13, all
d < 0.19), consistent with our predictions. Following training,
however, pairwise comparisons revealed that connectivity with
PRC was significantly greater during the viewing of Session
2 Novel objects relative to Session 2 Trained objects in PPA
(Fig. 6B; t(13) = 2.58, P = 0.02, d = 0.15) and V1 (t(13) = 3.80, P = 0.002,
d = 0.20), trending in LOC (t(13) = 2.01, P = 0.07, d = 0.21), but was
not significant in FFA (t(13) = 0.62, P = 0.55, d = 0.06).

We also examined whether PRC showed significant training-
related changes in its interaction with the peak of conjunctive
coding in posterior VVS, using the Training > Novel Conjunc-
tion ROI. As expected, in Session 1, there were no significant
differences in connectivity between the To-Be-Trained objects
and Novel objects (t(13) = 0.93, P = 0.37, d = 0.11). Like several of the
posterior VVS ROIs, however, this region showed significantly
greater connectivity with PRC during the viewing of Session 2
Novel objects relative to Session 2 Trained objects (t(13) = 2.70,
P = 0.02, d = 0.30). In sum, PRC was more functionally connected
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with conjunction-sensitive posterior VVS when encountering
Novel objects, pointing to a functional significance in the com-
munication between these regions when there are new conjunc-
tions to be learned.

Control Analysis 1: Perceptual Differences Between
Objects Do Not Facilitate Training-Independent Biases
in Visual Processing

An important aspect of our stimulus design was to assign one
object Family with a unique feature set to each training con-
dition, and to counterbalance those assignments across partic-
ipants. Although this approach minimized the impact of any
specific feature set on our present findings, the same was not
done for object body color because we wanted to ensure that the
stimuli in Session 2 were entirely novel and were not confused
with the Trained stimulus set. However, this left the possibility
that our results may arise in part from the effect of object body
color per se or the physical interaction between object body color
and its associated features (resulting in luminance or contrast
differences, for example). Furthermore, participants were more
likely to be aware of an object training status from looking
at the color alone; this awareness could cue differing object
viewing strategies that affected visual discrimination. Therefore,
we conducted an independent control study to ensure that
participants’ visual discrimination performance did not differ
according to body color.

First, to disentangle any practice effects for body colors that
appeared later in the control experiment from performance
biases arising from body color per se, we calculated a linear
mixed model to determine the separate contributions of run
order, color, and the interaction between run order and color on
hitrate during visual search. This model revealed a significant
main effect of run order on mean hitrate (F(2,59.31) = 3.82, P = 0.03),
consistent with the presence of practice effects. However, there
was neither a significant main effect of color (F(2,59.31) = 1.66,
P = 0.20) nor a significant interaction between order and color
(F(2,63.54) = 0.32, P = 0.87). Planned pairwise comparisons based on
body color also found no significant difference between the
mean hitrate of any two sets of object Families (Supplementary
Fig. 1A; Family 1 + 2 vs. Family 3 + 4: t(29) = −1.16, P = 0.26, d = 0.11;
Family 3 + 4 vs. Family 5 + 6: t(29) = 0.41, P = 0.68, d = 0.04; Family
1 + 2 vs. Family 5 + 6: t(29) = −1.65, P = 0.11, d = 0.14; for pairwise
comparisons based on run order, see Supplementary Fig. 2A).

It was necessary to determine if perceptual differences
between object Families had any impact on visual search
slope, given that it was our primary measure of behavioral
unitization during Visual Search Training. A significant effect
of color would suggest that the visual features of some Families
were more readily and immediately unitized than the features
of other Families, making it more difficult to interpret the
source of our neuroimaging effects. Linear mixed modeling
revealed a significant main effect of order (F(2,58.04) = 4.69,
P = 0.01), consistent with the presence of practice effects.
However, there was neither a significant main effect of color
(F(2,58.04) = 0.53, P = 0.60) nor a significant interaction between
order and color (F(2,66.01) = 1.12, P = 0.36). Once again, follow-up
pairwise comparisons based on body color found no significant
difference between the visual search slopes of any two sets
of object Families (Supplementary Fig. 1B; Family 1 + 2 vs.
Family 3 + 4: t(29) = −0.43, P = 0.67, d = 0.05; Family 3 + 4 vs. Family
5 + 6: t(29) = −1.03, P = 0.31, d = 0.11; Family 1 + 2 vs. Family 5 + 6:
t(29) = 0.44, P = 0.66, d = 0.06; for pairwise comparisons based on

run order, see Supplementary Fig. 2B). Together, these results
suggest that perceptual differences between the object Families
did not create any inherent differences in how they were visually
processed. Likewise, participants’ awareness of the relationship
between color and object novelty was unlikely to have resulted
in differing viewing strategies. Interestingly, the strategy most
often reported during participant debriefing was to give some
of the objects names. We speculatively interpret this naming
strategy as actually being further evidence of a tendency to
unitize (i.e., they have unified the features of an object under a
single name, rather than considering them separately). However,
this strategy applied uniquely to each object in question and did
not vary systematically with our experimental conditions. In
sum, the effects we observed in the main experiment most
likely arose from the objects’ training histories imposed by our
experimental design.

Control Analysis 2: Non-linear BOLD Signal Properties
Did Not Bias Multivariate Decoding

Voxel-wise Signal to Single- and Double-feature Objects
In order to test the possibility that signal saturation confounded
our results, we first investigated the single- and double-feature
response distributions by overlaying them with respect to each
other (Supplementary Fig. 3C, top panels). This made it evident
that the response distributions share a similar amplitude range,
likely because the majority of the response is driven by the
large object body rather than the individual features. That said
that t-tests showed that the distributions did differ significantly
at many points, particularly at the higher response amplitudes
(Supplementary Fig. 3C, bottom panels). It was necessary to
ensure that these differences were not the result of signal satu-
ration limiting the highest double-feature response amplitudes
and, therefore, negatively skewing the overall double-feature
response distribution (see Supplementary Fig. 3B, blue curve, for
a hypothetical example). Thus, we calculated paired Student’s t-
tests across participants, which revealed that the skewness of
the double-feature response distribution did not significantly
differ from the skewness of the single-feature response dis-
tribution for either Trained objects (P = 0.1) or Novel objects
(P = 0.86). Indeed, any slight numerical difference in skewness we
observed was positive (skewness difference for Trained objects:
0.10; Novel objects: 0.02). Importantly, we found no evidence
that the double-feature response distribution was negatively
skewed relative to the single-feature response distribution. This
suggests that the difference in response distributions was not
the result of signal saturation, but rather a more global rightward
shift of the double-feature responses such as linear addition or
response scaling.

The Influence of Univariate Single-Feature Response Amplitude on
Multivariate Contrasts
To investigate any effects of divisive normalization, and the
more general possibility where strong univariate responses may
systematically bias the multivariate analyses, we tested whether
the response amplitude evoked by single features was correlated
with the effect strength of our conjunction contrast searchlights.
Voxels were partitioned into five evenly spaced bins represent-
ing the top 80–100% of the single feature response amplitudes,
continuing down to the bottom 1–20% of the single feature
response amplitudes. The mean t-statistic from the multivariate
conjunction contrast searchlights for Trained and Novel objects
(shown in Fig. 4B and A, respectively) was calculated across the
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voxels in each of these bins, and the results were averaged across
participants (Supplementary Fig. 4). Using repeated-measures
ANOVA, we calculated a linear contrast to determine if the
searchlight t-statistics increased or decreased as a function
of single-feature response amplitude. Critically, this analysis
found no evidence of a positive linear relationship between
univariate response amplitude and multivariate searchlight t-
statistic (Trained F(1,13) = 2.15, P = 0.17; Novel F(1,13) = 0.11, P = 0.75).
In fact, the direction of the linear relationship between the
univariate response and multivariate searchlight t-statistic was
numerically negative for both Trained and Novel objects. We
found no significant effect for any higher order contrasts (e.g.,
exponential, quadratic).

Together, these observations are neither consistent with sig-
nal saturation nor divisive normalization and provide no sup-
port for the possibility of a nonlinear bias in the single-feature
response confounding our multivariate effects from fMRI Anal-
ysis 1.

Discussion
It is established that certain transformations occur within the
brain to allow more rapid processing of familiar experiences.
In this study, we show that unitization may be a fundamental
mechanism that transforms brain representations to allow more
rapid processing of familiar experiences. First, we observed that
conjunctive coding became stronger in posterior VVS follow-
ing training. Furthermore, the representations for individual
objects became more distinct from one another, an effect that
was observed across both Trained and Novel objects. Finally,
FC between PRC and posterior VVS changed as a function of
experience such that PRC was less functionally connected with
posterior VVS for highly trained objects. Below we discuss how
each of these representational changes were predicted by the
novel framework that we have developed.

Learning Modifies the Distributed Representation
of Object Conjunctions

First, our current findings with the novel objects replicate our
earlier finding that PRC and LOC possess a conjunctive code
distinct from the representation of the component features
themselves (Erez et al. 2016) (Fig. 4A). This is consistent with
reports that damage to LOC (Behrmann and Williams 2007;
Konen et al. 2011) impaired judgments requiring integration of
multiple object features of similar complexity to those employed
in the current study, and that the neural responses in this region
tracked performance in the visual search of conjoined object
dimensions (Frank et al. 2014). Moreover, amnesic patients with
PRC damage were dramatically impaired when discriminating
between the objects of similar complexity to those employed in
the current study (e.g., Barense et al. 2005; Barense et al. 2007;
Barense et al. 2012a). Critically, these deficits were observed
only when it was a conjunction of complex object features that
uniquely identified the solution, but not when the discrimina-
tion involved simpler stimuli-like shapes.

Having established the brain’s response to novel object fea-
ture conjunctions, we turned to our critical research question:
what transformations occur during extended learning to sup-
port faster discrimination of familiar objects? Similar to Czer-
winski et al. (1992), our participants’ behavioral patterns indi-
cated that visual discrimination training increased visual search
efficiency for trained objects relative to novel objects (Fig. 3B).

Critically, our pre and posttraining fMRI scanning also allowed us
to determine whether any neural changes within VVS occurred
specifically for those highly trained objects. Existing research
indicates representational changes within VVS that reflect task-
relevant dimensions; for example, primate IT cortical neurons
may become more selective for the conjunctions of features
(Baker et al. 2002), and object representations in human ven-
tral temporal cortex reorganize to reflect acquired contextual
associations (Clarke et al. 2016). PRC is also implicated in pro-
cessing stimuli with greater “lifetime” experience (Barense et al.
2010; Barense et al. 2011; Duke et al. 2016; Bowles et al. 2016).
Consistent with these reports, we showed that PRC conjunctive
representations were stronger for Session 2 Trained versus Ses-
sion 2 Novel objects (Fig. 4C). Importantly, we further showed
that entirely new clusters were recruited in posterior VVS—
including FFA and PPA—to represent Session 2 Trained feature
conjunctions (Fig. 4B).

Unitization theory proposes that feature conjunctions may
be “chunked” together through learning and be accessed
as one unit (Goldstone 1998, 2000). While unitization has
been observed in behavioral experiments across multiple
visual domains, including words (e.g., Smith and Haviland
1972; Laberge 1973), faces (e.g., Valentine 1988; Tanaka and
Farah 1993), novel objects (e.g., Gauthier and Tarr 1997), and
even more arbitrary relational associations (e.g., Quamme
et al. 2007; Parks and Yonelinas 2014), understanding of its
neural underpinnings has been limited. The representational-
hierarchical view posits that posterior VVS is optimized for
processing simple features compared with anterior VVS/PRC,
where representations are more complex and conjunctive
(Bussey et al. 2002; Cowell et al. 2010). Thus, our combined
understanding of these two theories predicts that unitization
transforms conjunctive representations through PRC input to
become more “feature-like” and represented in posterior VVS.
Furthermore, past research utilizing univariate approaches
has consistently highlighted the increased engagement of FFA
after visual training to expert levels, or by comparing expert to
naïve viewers of certain object classes (Gauthier and Tarr 1997;
Gauthier et al. 1999, 2000). However, the nature of the neural
computations driving that engagement had been uncertain.
Our findings tie together our own model predictions with
these existing observations by showing that conjunctive coding
shifted to more posterior regions of the VVS, overlapping with
FFA and PPA. These results are the first empirical link between
unitization, the representational-hierarchical view, and their
theorized neural mechanisms.

Other regions outside the VVS are thought to be impor-
tant for representing the conjunctions of visual features. In
particular, the role of parietal cortical subregions in the con-
junctive representation of color and spatial frequency is well-
supported (Esterman et al. 2007; Baumgartner et al. 2013; Poll-
man et al. 2014). Interestingly, the conjunction contrast con-
ducted for Novel objects from fMRI Analysis 1 did reveal regions
outside the VVS, including clusters within the supramarginal
gyrus (peak x, y, z = 50, −42, 12, respectively) and angular gyrus
(peak x, y, z = −54, −54, 16, respectively; see Supplementary Table
1). These clusters overlap with other reports of subregional
sensitivity to simple visual conjunctions within parietal cortex.
For example, Pollman et al. (2014) reported sensitivity to color
and spatial frequency fill patterns in temporoparietal junction,
and Cowell et al. (2017) reported sensitivity to line contours
and spatial frequency fill patterns in posterior parietal cortex.
Surprisingly, the conjunction contrast yielded no significant
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clusters for Trained objects in these parietal subregions. This
lack of training-driven conjunctive coding was also noted by
Cowell et al. (2017); considering these findings together, we
would speculate that parietal cortex is most involved when
visual conjunctions are still novel and encoding demands are
highest.

Evidence for Explicit Conjunctive Coding of Complex
Object Features

The results of our experiment also help arbitrate between
two predominant types of coding schemes widely thought
to support conjunctive object representation. The first is a
global feature-coding scheme in which individual features (e.g.,
A or B) are coded within visually sensitive cortical modules
(Singer and Gray 1995; Eckhorn 1999). Under this scheme,
conjunctive objects (e.g., AB) are coded by the co-activation of
the individual modules sensitive to A and B. Thus, the whole
object is quite literally the sum of its parts. On the other
hand, a second coding scheme proposes that conjunctions
are coded by their own cortical modules that are tuned to
respond only to specific feature combinations (e.g., AB) but not
to the component features themselves. This explicit conjunctive
coding represents the whole object in a manner that is above
and beyond the sum of its parts. Notably, finding direct evidence
for each of these two representational schemes was a challenge
with traditional univariate approaches. When considering a
brain region’s average univariate response to a conjunctive
object (e.g., AB), determining how much of that response is
evoked by A or B is not straightforward. However, recent studies
used multivariate pattern analyses as a more sensitive tool;
for example, MacEvoy and Epstein (2011) showed evidence
consistent with a feature-coding scheme in LOC, where the
linear combination of brain activation patterns evoked by
objects A and B explained nearly all of the brain activation
pattern evoked by a scene containing both objects (i.e., the whole
was the sum of the parts). By contrast, Erez et al. (2016) developed
a novel use of multivariate pattern analyses specifically to target
the conjunctive coding scheme in the brain, and used it to
show that different combinations of the same features (A + BC
vs. B + AC vs. C + AB) were coded uniquely in PRC—the first
direct evidence from humans for a conjunctive representation
above and beyond the sum of its parts for complex objects
in PRC. In the present study, we used the same approach to
understand how this conjunctive code is affected by experience.
To determine the likelihood that feature-coding could explain
our conjunction contrast results, we directly tested whether
the voxels most sensitive to single features were systematically
biased to show strong effects in our multivoxel searchlights.
We found no evidence to support this claim (Supplementary
Fig. 4). That said, feature-coding may contribute indirectly to
the conjunctive representation of complex objects and still
plays an important role in visual discrimination in general.
In particular, the sensitivity of a feature’s multivariate pattern
response to its context (e.g., A in the context of AB relative to
AC) would be valuable in forming conjunctive representations of
whole objects. Meanwhile, it could also have other applications.
For example, sharper representation of features, in particular,
contexts might improve their recognition (Moldakarimov et al.
2010). In future work, it will be important to further elucidate the
functional implications of these conjunctive representations,
for example, by characterizing the relationship in inter- or
intra-individual differences in neural representation and

task performance, or by further elucidating the downstream
mechanisms. Importantly, the representational-hierarchical
view proposes that both feature-coding and conjunctive-coding
schemes are present within the brain but are tuned to different
levels of visual representation even for the same object (e.g.,
Cowell et al. 2017). In the next section, we discuss our findings
in support of this prediction and highlight how the interactions
between representational layers change with experience.

Extensive Training Separates the Representations
of Individual Object Exemplars

We predicted that visual discrimination training would modify
the brain’s response not only to the conjunction of features
(Fig. 4) but also to the individual objects themselves regardless
of the conjunction. There is ample evidence that task-relevant
dimensions shape the brain’s response to visual objects, result-
ing in greater sensitivity to small perceptual changes (Folstein
et al. 2010; Folstein et al. 2013). Beyond perception, early visual
cortex increases its capacity for spatial coding and predictive
coding of associated outcomes in mice and humans, respectively
(Fiser et al. 2016; Hindy et al. 2016). We found that VVS responses
to individual objects diverged in representational space follow-
ing visual training in FFA, PPA, LOC, and V1 (Fig. 5C). Notably,
this effect was also observed in a functional ROI that was highly
sensitive to training-related increases in conjunctive coding (the
Trained > Novel Conjunction ROI), and which we defined indi-
vidually within each participant’s posterior VVS. Although these
findings are consistent with existing research, it might seem
unusual that the visual system simultaneously embodies uni-
tization and neural separation of these highly repeated objects.
We propose that rather than being paradoxical, this property is
predicted by the representational-hierarchical view.

Specifically, according to the representational-hierarchical
view, conjunctions are explicitly coded—with a representation
independent from the component features. The contrasting
feature-coding hypothesis posits a nonlocal binding mechanism
in which conjunctions are composed of individual feature
representations linked by co-activation (Singer and Gray 1995;
Uhlhaas et al. 2009). Thus, PRC could alternately serve as an
independent substrate for explicit conjunctive representations
or as a central hub in a conjunctive network that dynamically
reactivates associated object features but never explicitly
represents the conjunctive whole (Eckhorn 1999; Devlin and
Price 2007). Conveniently, each hypothesis predicts a unique
relationship between the conjunctive and individual feature
“layers” of the representational hierarchy. If conjunctions are
explicitly coded, modifications in the feature layer can occur
without affecting the conjunctive layer. If conjunctions reflect
the networks of feature representations, changes to the feature
and conjunctive layers would always occur in tandem. We
observed increased distinction between “individual” object
representations for both Session 2 Trained and Session 2
Novel objects (Fig. 5C), whereas the “conjunctive” coding was
stronger for Session 2 Trained relative to Session 2 Novel objects
(Fig. 4C). This suggests that posttraining modifications can
occur independently in different layers of the representational
hierarchy, and argues against the alternate view that feature-
coding or feature sharpening can explain the observations
of a conjunctive response. Convergent work exploring the
transition from feature-coding to conjunction-coding in the
VVS showed evidence for a hierarchical coding scheme that
was not only representationally separate but also anatomically
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separate along an anterior-posterior axis (Cowell et al. 2017).
Our complementary findings demonstrate that the neural
architecture supporting feature-level coding can also be
reorganized to support the coding of unitized conjunctions
through experience.

Why did feature separation occur even for Session 2 Novel
objects, when one might have predicted such changes only for
the Session 2 Trained objects? The representational-hierarchical
framework focuses on how exposure shapes object representa-
tions and is agnostic to how these effects might generalize to
new material that does not directly overlap in terms of either the
features or their conjunctions. However, there are several post
hoc explanations for why generalization is a realistic possibility
in the present study. First, the demands of the 1-back task
behoove participants to distinguish between objects regardless
of past training (e.g., object A and object AB should never be
confused despite a shared feature). Second, participants may be
acquiring expertise in this class of objects as a whole, which may
generalize to novel members of that class. Behavioral studies
broadly corroborate this assertion (e.g., Tanaka et al. 2005; Wong
et al. 2009; Bukach et al. 2012). In support of this view, the visual
search slopes of Novel Probe (yellow) objects on Day 6 were
numerically shallower than the search slopes of the Learning
Set (blue) objects on Day 1 (d = 0.41; Fig. 3B), suggesting that there
was some training-related generalization to the Novel Probe
objects. Moreover, our stimuli were likely conducive to transfer
of expertise; despite being different colors, Session 2 Trained
objects and Session 2 Novel objects shared the same body shape,
and their features occupied similar regions of visual space.

On the other hand, it is possible that Trained objects could
have exhibited greater learning-related neural separation rel-
ative to Novel objects, but we lacked sufficient control over
which dimensions each participant found to be most salient or
could not guarantee that those dimensions were equally salient
to start. Moreover, differences in perceived saliency across the
unique Novel objects from fMRI Sessions 1 and 2 could have
masked any conditional effect of training in a manner subjective
to each participant. It would be possible to be certain of the
specific contributions to feature separation in a separate exper-
iment where the diagnostic features within an object Family
were better controlled, or if we ensured that the Novel objects
were actually the same objects across fMRI sessions but did not
undergo visual training. For example, an experiment based on
the present study could employ a modified version of the Visual
Search Task where the list of possible distractors were restricted
for each object Family, such that some features would never or
rarely be foiled during training. In this way, one could manipu-
late the level of training of specific features while controlling the
amount of visual exposure and keeping all conjunctions intact.
A per-Family separation score would capture the neural distance
between more trained versus less trained features within the
same Family of objects. This additional level of granularity may
be necessary to detect the unique effect of Visual Search Train-
ing within each object Family and individual participant.

Learning is Supported by Interactions Between PRC and
Posterior VVS

Finally, we asked whether different levels of the VVS hierarchy
become more functionally connected to support experience-
related representational changes. As a starting point, we con-
sidered PRC due to its persistent role in the conjunctive repre-
sentation both before and after visual training, and established

anatomical and functional evidence for a connection between
PRC and posterior VVS (Suzuki and Amaral 1994; Clavagnier et
al. 2004; Peterson et al. 2012; Cacciamani et al. 2017). We pre-
dicted that PRC could either mediate the formation of unitized
conjunctive representations in posterior VVS during learning, or
facilitate the retrieval of unitized conjunctive representations
after learning. In the former case, PRC would be more function-
ally connected to posterior VVS during novel objects (in order to
take and unitize information about individual features); in the
latter case, connectivity would be greater during trained objects
(in order to facilitate rapid retrieval of single features). Consis-
tent with the former prediction, we found that FC between PRC
and V1 and between PRC and PPA was highest during Novel
objects. Importantly, the Trained > Novel Conjunction Contrast
ROI—representing the peak of training-related increases in con-
junctive coding—also showed stronger FC with PRC during Novel
objects. Critically, we observed none of these effects in fMRI
Session 1, before any Visual Training had occurred. Together,
these are strong evidence for a role of novelty in gating PRC-VVS
interactions that underlie unitization.

Notably, computational models of the representational hier-
archy have suggested that conjunctive representations can form
over many trials of input without any interaction between the
PRC and posterior layers (Cowell et al. 2006; Sadil and Cowell
2016), and one amnesic case with PRC damage was able to
spontaneously unitize relational stimuli (Ryan et al. 2013). It is
an empirical question whether unitized conjunctions in pos-
terior VVS formed with PRC input are fundamentally different
from those formed without. Furthermore, damage to PRC may
limit the speed and complexity of conjunctive representations
to be formed while preserving the formation of less complex
conjunctions.

Conclusions
Although it is commonly accepted that our ability to perceive
complex objects improves with repeated experience, the neu-
ral transformations in support of this behavior are relatively
unknown. This study tested a functional model that unifies
two established theories: the representational-hierarchical view
and the theory of unitization. Importantly, this unified model
makes unique predictions about the effect of experience on the
spatial distribution of conjunctive representations across the
VVS and the communication between VVS regions—predictions
that could not have been generated by either theory alone. Using
fMRI and multivariate analysis techniques, we have provided
the first compelling data demonstrating how the visual system
elevates feature conjunctions according to task demands and
distributes their representation to ensure their rapid retrieval in
the future.
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